首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frog, Rana esculenta, pituitary and testis gonadotropin-releasing hormone (GnRH) receptors were characterized by using 125I-chicken IIGnRH (cIIGnRH) as radiolabeled ligand. At 4 C equilibrium binding of 125I-cIIGnRH to pituitary homogenates was achieved after 90 min of incubation; binding of 125I-cIIGnRH to testis membrane fractions reached its maximum at 60 min of incubation. Binding of the radioligand was a function of tissue concentration, with a positive correlation over the range 0.5-2 tissue equivalents per tube. One pituitary and one testis per tube were used as standard experimental condition. Incubation of the pituitary homogenate with increasing concentrations of 125I-cIIGnRH indicated saturable binding at radioligand concentrations of 1 nM and above while for the testis membrane preparation saturation was achieved using 5 nM 125I-cIIGnRH. The binding of 125I-cIIGnRH was found to be reversible after addition of the cold analog and the displacement curves could be resolved into one linear component for both tissues. Scatchard analysis suggested the presence of one class of binding sites for both pituitary and testis (Pituitary: Kd = 1.25 +/- 0.14 nM and Bmax = 8.55 +/- 2.72 fmol/mg protein; testis: Kd = 2.23 +/- 0.89 nM and Bmax = 26.48 +/- 7.39 fmol/mg protein). Buserelin displaced the labeled 125I-cIIGnRH with a lower IC50 as compared with cIIGnRH cold standard, while Arg-vasopressin (AVP) was completely ineffective, confirming the specificity of binding.  相似文献   

2.
The binding of [3H]dipyridamole ([3H]DPR) to guinea pig brain membranes is described and compared to that of [3H]nitrobenzylthioinosine ([3H]NBI). The binding of [3H]DPR is saturable, reversible, and specific with pharmacologic evidence indicating that this ligand is binding to the adenosine uptake site. Compared to [3H]NBI the binding of [3H]DPR is of higher capacity (Bmax = 208 +/- 16 fmol/mg protein for [3H]NBI and 530 +/- 40 fmol/mg protein for [3H]DPR) and lower affinity (KD = 0.35 +/- 0.02 nM for [3H]NBI and 7.6 +/- 0.7 nM for [3H]DPR). The adenosine uptake inhibitors are the most potent inhibitors of binding (Ki of 10(-8)-10(-7) M) whereas adenosine receptor ligands such as cyclohexyladenosine, 2-chloroadenosine, and various methylxanthines are several orders of magnitude less potent (Ki 10(-5)-10(-2). The inhibition of [3H]DPR binding by NBI is biphasic, with only 40% of binding being susceptible to inhibition of NBI concentrations less than 10(-5) M. The tissue distribution of [3H]DPR binding parallels that of [3H]NBI although in most cases significantly more sites are observed with [3H]DPR. Calcium channel blocking agents such as nifedipine, nimodipine, and verapamil are also inhibitors of [3H]DPR binding with potencies in the micromolar range. The data are consistent with [3H]DPR being a useful additional ligand for the adenosine uptake site and provide evidence that multiple uptake binding sites exist of which only about 40% are NBI-sensitive.  相似文献   

3.
Specific binding of a fully biologically active 125I-gonadotrophin releasing hormone (GnRH) to isolated anterior pituitary cells is time dependent, saturable and the concentration dependent binding curves exhibit positive cooperativity. Binding to intact or solubilized plasma membranes and an affinity purified GnRH receptor protein reveals in all instances multiple high affinity binding sites. Thus, GnRH receptor protein appears to be an intrinsic constituent of the cell membrane, and perhaps, other membranous organelles. To investigate the latter, the binding of 125I-GnRH to various subcellular fractions was studied and its affinity and time requirements determined. GnRH binding to plasma membranes and secretory granules was to multiple high affinity sites, while that to nuclei and microsomes was to a single high affinity site. Binding was 1.83 +/- 0.07, 0.78 +/- 0.04, 0.31 +/- 0.03 and 0.27 +/- 0.03 fmol micrograms-1 protein for isolated plasma membranes, secretory granules, microsomes and nuclei, respectively, after 30 min incubation with 10(-9) M GnRH. The magnitude of binding to microsomes did not change during the incubation period. It did not show any decrease (p greater than 0.05) in isolated nuclei and plasma membranes, except for the 24 h time period, when a significant drop (p less than 0.001) was seen. Binding to the secretory granule fraction culminated at 15 min and then decreased (p less than 0.001) steadily to a non-detectable level at 24 h. Thus GnRH receptor protein or its portion may be an integral part of some membranous particles in the anterior pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Kinetics of myo-inositol (MI) uptake into primary cultures of bovine corneal endothelial cells (CEC) were studied. Confluent corneal endothelial cells accumulated 3H-MI in a time dependent and saturable process. At a narrow range of external concentrations of 3H-MI (4-50 microM), the Na(+)-dependent MI uptake followed saturation kinetics. The apparent Km value was 20 microM with a maximum velocity (Vmax) of 16 pmol/20 min/micrograms DNA. At low external 3H-MI concentrations the uptake was dependent on Na ions, but at higher levels the Na(+)-independent fraction of MI uptake significantly increased. The uptake was sensitive to removal of Ca ions and to the presence of inhibitors such as n-ethyl maleimide, phlorizin, ouabain, and amiloride (an inhibitor of Na+/H+ exchanger). The sensitivity of MI uptake toward inhibitors and ionic changes in the bathing media was reduced as external concentrations of 3H-MI increased. Citrate at 0.5 mM increased the uptake, suggesting involvement of mitochondrial oxidative metabolism in the MI uptake. Percent release of radioactivity by 2 min, after an initial 40-min incubation with 20 microM 3H-MI, was 6.6% +/- 0.8 or 35% +/- 4 when release media contained BSS alone or BSS containing 5 mM nonradioactive MI, respectively. Efflux of radioactivity from the cells also was enhanced when release media contained 40 mM glucose. Glucose and galactose as well as nonmetabolizable glucose analogues, such as 3O-methyl glucose or alpha-methyl glucose, at high concentrations (40 mM), acutely (in the incubation media) or chronically (in the growth media) inhibited MI uptake into CEC, and the extent of inhibition was inversely proportional to the external levels of 3H-MI. However, glucose at lower levels (less than or equal to 10 mM) slightly increased MI uptake. These studies indicated that the uptake of MI into corneal endothelial cells was an Na(+)-dependent active process at a narrow range of external radioactive MI concentrations. Higher levels of MI were taken up by the cells via a passive diffusion mechanism, independent of carrier protein(s). Glucose influenced the uptake of MI in a complex manner. The increased MI efflux by glucose or by MI was perhaps due to the limited capacity of CEC for accumulation or compartmentalization of this or other solutes/osmolytes, a phenomenon that may be related to the role of CEC in maintenance of corneal deutergence. High glucose-induced inhibition of Na(+)-dependent MI uptake may be in part due to glucose regulation of Na+ fluxes and cell volume.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Recently it was found that lactoferrin, an iron-binding glycoprotein with a molecular weight of 76,500, inhibits the remnant receptor-mediated uptake of apolipoprotein E (apoE)-bearing lipoproteins by the liver. In the present study we characterized the hepatic recognition of lactoferrin. Intravenously injected 125I-lactoferrin was cleared rapidly from the circulation by the liver (92.8 +/- 9.5% of the dose at 5 min after injection). Parenchymal cells contained 97.1 +/- 1.5% of the hepatic radioactivity. Internalization, monitored by measuring the release of liver-associated radioactivity by the polysaccharide fucoidin, occurred slowly. Only about 40% of the liver-associated lactoferrin was internalized at 10 min after injection, and it took 180 min to internalize 90%. Subcellular fractionation indicated that internalized lactoferrin is transported to the lysosomes. Binding of lactoferrin to isolated parenchymal liver cells was saturable with a dissociation constant of 10 microM (20 x 10(6) binding sites/cell). The role of arginine residues on lactoferrin was studied by modifying these residues with 1,2-cyclohexanedione. The modification resulted in a strongly reduced liver association (15.9 +/- 1.6% of the dose at 5 min after injection). Furthermore, unlabeled 1,2-cyclohexanedione-modified lactoferrin did not inhibit the binding of 125I-lactoferrin to isolated parenchymal cells. Arginine residues on lactoferrin thus appear to be essential for its specific recognition by parenchymal liver cells. In particular the clustered N-terminal arginine residues, which resemble the arginine-rich receptor binding sequence in apoE, may be responsible for both the interaction of lactoferrin with its recognition site and the inhibition of the hepatic uptake of apoE-bearing lipoproteins.  相似文献   

6.
Administration of 50, 250, and 1,250 ng/kg iv of recombinant bovine tumor necrosis factor-alpha (RBTNF) did not affect basal plasma concentrations of growth hormone (GH) or thyroid-stimulating hormone in male calves. However, when administered 30 min before challenge with 1 microgram/kg iv of thyrotropin-releasing hormone (TRH), 250 ng/kg of RBTNF increased the subsequent incremental GH response. At 1,250 ng/kg of RBTNF, GH response to TRH was significantly blunted. For each dose of RBTNF administered, the incremental change in plasma thyroid-stimulating hormone following TRH was not significantly different from control. To examine direct effects of RBTNF on pituitary function, fresh bovine pituitaries were sliced into 1-mm cubes and incubated with 0 or 10(-8), 10(-9), or 10(-10) M RBTNF. Additional cultures were treated with 10(-8) or 10(-9) M GH-releasing factor or 10(-8) M TRH and 0 or 10(-8) M RBTNF. Media GH increased in cultures with 10(-10) M RBTNF and declined linearly as RBTNF concentration increased. RBTNF blocked GH release from GH-releasing factor- and TRH-challenged pituitary slices. Membranes prepared from homogenized bovine pituitaries had specific saturable binding characteristics for monomeric 125I-RBTNF. Membranes treated with 4 M MgCl2 for 10 min and washed free of Mg2+ produced Scatchard plots fit to a two-site model (high affinity site Kd = 6.6 nM), while Scatchards of non-Mg(2+)-treated membranes fit a single site (Kd = 8.9 nM). Polyacrylamide gel electrophoresis separation of 125I-RBTNF cross-linked pituitary membranes showed specific binding of monomeric 125I-RBTNF to protein components ranging in molecular weight from 19,000 to 77,000. The data suggest that RBTNF has modulatory effects on the regulation of GH secretion acting directly at the pituitary through specific receptors.  相似文献   

7.
The specific binding protein for substance P (SP) was solubilized in an active form from the crude mitochondrial (P2) fraction of bovine brainstem. After incubation with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and 0.1 M NaCl at 0 degrees C for 30 min, the SP binding to the supernatant fraction (100,000 g, 60 min) was determined by the glass fiber filtration method reported by Bruns et al. (1983). The specific [3H]SP binding to the solubilized fraction was highly specific for SP and was displaced by nanomolar concentrations of SP and physalaemin, but only by micromolar concentrations of eledoisin. In addition, the binding was inhibited by GTP (approximately 40% of the specific binding decreased by 10 microM GTP) in both preparations. These results were virtually identical to those of P2 membrane preparations and suggested that this high-affinity SP binding site belongs to the SP-P type. Scatchard analyses of SP binding to the solubilized fraction revealed a single saturable component with a Bmax of 22.0 +/- 5.10 fmol/mg protein and a KD of 0.79 nM, and these values are almost the same as those obtained in the P2 fraction (Bmax = 31.3 +/- 3.56 fmol/mg protein, KD = 0.82 nM). Gel filtration analysis showed that the detergent-SP binding protein complex has two calculated molecular weights of greater than 1,000,000 and 55,000-60,000 (a corresponding Stokes radius of 35.5 nm).  相似文献   

8.
Pathways in the binding and uptake of ferritin by hepatocytes   总被引:4,自引:0,他引:4  
The binding and uptake of rat liver ferritin by primary cultures of rat liver hepatocytes was studied in order to assess the relative importance of saturable, high-affinity pathways and nonspecific processes in the incorporation of the protein by the cells. To minimize artifacts, ferritin not subjected to heat treatment and labeled in vivo with 59Fe was used. Binding to cell membranes was estimated from incubations performed at 4 degrees C. After 2 h, when a steady state in cell-associated ferritin had been achieved, approx. 4-10(4) binding sites per cell were observed, with an affinity constant for ferritin of 1 x 10(9) M-1. At 37 degrees C, the maximal uptake from these sites was 1.3 x 10(5) ferritin molecules/cell per h. For ferritin molecules bearing an average of 2400 iron atoms, this uptake amounts to 5 x 10(6) iron atoms/cell per min. Half-maximal uptake was achieved at a ferritin concentration, or KM1, of 3 x 10(-9) M. Although uptake rates at least a thousand times greater could be achieved by binding to the much larger number of low-affinity sites, the apparent KM2 for such 'nonspecific' uptake was 4 x 10(-7) M. At ferritin concentrations up to 2 nM, at least 90% of ferritin bound and taken up by hepatocytes involves saturable, high-affinity sites, presumably true ferritin receptors.  相似文献   

9.
The phencyclidine (PCP) receptor acylator, metaphit, has been reported to act as a PCP antagonist. Recent electrophysiological and behavioral assessments of metaphit action have revealed, however, that this compound can also act as a PCP-like agonist. The present study examined the effects of metaphit on the inhibition of N-methyl-D-aspartate (NMDA)-induced 3H-acetylcholine (ACh) release, 3H-TCP binding and synaptosomal 3H-dopamine (DA) uptake in the rat striatum. Preincubation of striatal slices for 10 min in the presence of metaphit, followed by a prolonged washout, produced a concentration-dependent inhibition of the ACh release evoked by 300 microM NMDA. At high concentrations, preincubation with PCP also resulted in inhibition of this measure. However, this could be reduced by extending the washout period, a procedure which had no effect on the inhibition produced by metaphit. At 10 microM, metaphit resulted in a 53% reduction in NMDA-evoked ACh release while PCP had no effect under identical conditions. Preincubation of slices in 10 microM PCP and metaphit reduced the metaphit inhibition by 62%. The effects of PCP and metaphit, alone or in combination, on NMDA-induced ACh release were paralleled by a loss of 3H-TCP binding sites in striatal tissue incubated under identical conditions suggesting that metaphit exerts long-lasting agonist-like actions on PCP receptors coupled to NMDA receptors. Although these results do not explain the ability of metaphit to antagonize PCP effects in other assays, we did observe that preincubation of striatal synaptosomes with metaphit also resulted in an irreversible inhibition of 3H-DA uptake. These data are discussed in relation to the interaction of metaphit with PCP receptors in various systems.  相似文献   

10.
The distribution of hepatic binding sites for the calcium-mobilizing second messenger, inositol 1,4,5-trisphosphate (IP3), was analyzed in subcellular fractions of the rat liver by binding studies with [32P]IP3 and compared with the Ca2+ release elicited by IP3 in each fraction. Three major subcellular fractions enriched in plasma membrane, mitochondria, and endoplasmic reticulum were characterized for their 5'-nucleotidase, glucose-6-phosphatase, succinate reductase, and angiotensin II binding activities. The fraction enriched in plasma membrane showed 7- and 20-fold increases in IP3 binding capacity over those enriched in endoplasmic reticulum and mitochondria, respectively, and contained a single class of high-affinity binding sites with Kd of 1.7 +/- 1.0 nM and concentration of 239 +/- 91 fmol/mg protein. IP3 binding reached equilibrium in 30 min at 0 degrees C, and the half-time of dissociation was about 15 min. The specificity of the IP3 binding sites was indicated by their markedly lower affinities for inositol 1-phosphate, phytic acid, fructose 1,6-bisphosphate, 2,3-bisphosphoglycerate, and inositol 1,3,4,5-tetrakisphosphate. The Ca2+-releasing activity of IP3 in the subcellular fractions was monitored with the fluorescent indicator, Fura-2. All three fractions showed ATP-dependent Ca2+ uptake and rapidly released Ca2+ in response in IP3. The fraction enriched in plasma membrane was the most active in this regard, releasing 174 +/- 67 pmol Ca2+/mg of protein compared to 45 +/- 10 and 48 +/- 7 pmol/mg protein for the fractions enriched in endoplasmic reticulum and mitochondria, respectively. These data suggest that the [32P]IP3 binding sites represent specific intracellular receptors through which IP3 mobilizes Ca2+ from a storage site associated (or co-purifying) with the plasma membrane of the rat liver. It is likely that a specialized vesicular system (to which IP3 can bind and trigger the release of Ca2+) is located in close proximity with the plasma membrane and is thus adjacent to the site at which IP3 is produced during stimulation of the hepatocyte by Ca2+-mobilizing hormones.  相似文献   

11.
A M Poon  S F Pang 《Life sciences》1992,50(22):1719-1726
2-[125I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8 +/- 4.12 pmol/l and binding site density (Bmax) of 0.69 +/- 0.082 fmol/mg protein at mid-light (n = 10). There was no significant change in the Kd (41.8 +/- 3.16 pmol/l) or the Bmax (0.58 +/- 0.070 fmol/mg protein) at mid-dark (n = 10). Kinetic analysis showed a Kd of 23.13 +/- 4.81 pmol/l (mean +/- SE, n = 4), in agreement to that derived from the saturation studies. The 2-[125I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than N-acetylserotonin, 6-hydroxymelatonin greater than 5-methoxytryptamine, 5 methoxytryptophol greater than serotonin, 5-methoxyindole-3-acetic acid greater than 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan greater than tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction (65.5%), the rest are distributed in the microsomal fraction (17.4%), mitochondrial fraction (14.7%) and cytosolic fraction (0.3%). The demonstration of 2-[125I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system.  相似文献   

12.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

13.
The synthetic hexapeptide, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP, Growth Hormone-Releasing Peptide), has no structural similarities with any of the GH-releasing peptides known and its action in releasing GH is by a complementary but yet not clearly defined action on the pituitary as well as hypothalamus. Therefore, in vitro studies have been performed to demonstrate and characterize GHRP binding sites on peripheral membranes of both porcine pituitary and hypothalamus. The membrane binding sites were specific, reversible, saturable and time, temperature, pH and concentration dependent under optimum binding assay conditions. The maximum specific binding was observed between pH 5.0 and 6.0. In the presence of Ca2+ and Mg2+ ions, with or without chelating agents there was a significant reduction in the specific binding. Scatchard analysis of these binding sites using increasing doses of unlabeled GHRP revealed a single low affinity site with a 2.1 x 10(-5) M and 1.7 x 10(-5) M and a maximum number of sites of 10 nmol/mg protein and 5 nmol/mg protein for pituitary and hypothalamus, respectively. It is also observed that (D-Lys3)-GHRP, substance P antagonists and growth hormone-releasing factor analog were potent inhibitors of GHRP binding in both tissues.  相似文献   

14.
Brief exposure to the protein neurotoxin, beta-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labelled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes. In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial preparations (3.3 +/- 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 +/- 0.05 pmol/mg). It is also shown that labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude that beta-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

15.
NCB-20 cells (neuroblastoma X fetal Chinese hamster brain hybrids) are equipped with a [3H]5-hydroxytryptamine [( 3H]5-HT) uptake system and [3H]imipramine recognition sites. Approximately 80% of the radioactivity taken up by cells incubated with [3H]5-HT was identified with 5-HT. [3H]5-HT uptake was temperature-dependent, partially sodium-dependent, saturable (Km = 7.3 +/- 0.6 microM; Vmax = 2.0 +/- 0.6 pmol/min/mg), and inhibited by clomipramine, imipramine, fluoxetine, and desipramine, but not by iprindole, mianserin, or opipramol. Lineweaver-Burk plots showed a competitive type of inhibition by imipramine and fluoxetine. [3H]5-HT uptake was not inhibited by nisoxetine or benztropine. [3H]Imipramine binding sites had a KD of 12 +/- 2 nM and a Bmax of 22 +/- 7 pmol/mg protein. The binding was sodium-sensitive although to a lesser extent than that found with brain membranes. Imipramine binding was displaced by tricyclic antidepressants with the following order of potency: clomipramine greater than imipramine greater than fluoxetine greater than desipramine much greater than iprindole = mianserin greater than opipramol. These results suggest that imipramine binding sites are present together with the 5-HT uptake sites in NCB-20 cells and that these sites interact functionally but are different biochemically.  相似文献   

16.
Abstract The pharmacological and biochemical characteristics of [3H]desipramine binding to rat brain tissue were investigated. Competition studies with noradrenaline, nisoxetine, nortriptyline, and desipramine suggested the presence of more than one [3H]desipramine binding site. Most of the noradrenaline-sensitive binding represented a high-affinity site, and this site appeared to be the same as the high-affinity site of nisoxetine-sensitive binding. The [3H]desipramine binding sites were abolished by protease treatment, a result suggesting that the binding sites are protein in nature. When specific binding was defined by 0.1 μM nisoxetine, the binding was saturable and fitted a single-site binding model with a binding affinity of ~1 nM. This binding fraction was abolished by lesioning of the noradrenaline neurons with the noradrenaline neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromo-benzylamine (DSP4). In contrast, when 10 μM nisoxetine was used to define the specific binding, the binding was not saturable over the nanomolar range, but the binding fitted a two-site binding model with KD values of 0.5 and >100 nM for the high- and low-affinity components, respectively. The high-affinity site was abolished after DSP4 lesioning, whereas the low-affinity site remained. The binding capacity (Bmax) for binding defined by 0.1 μM nisoxetine varied between brain regions, with very low density in the striatum (Bmax not possible to determine), 60-90 fmol/mg of protein in cortical areas and cerebellum, and 120 fmol/mg of protein in the hypothalamus. The binding capacities of these high-affinity sites correlated significantly with the regional distribution of [3H]noradrenaline uptake but not with 5-[3H]hydroxytryptamine uptake. The low-affinity sites did not correlate with the regional distribution of [3H]noradrenaline uptake. Drug inhibition studies showed that noradrenaline inhibits the binding defined by 0.1 μM nisoxetine in a competitive manner. Together, these findings suggest that only a small fraction of the [3H]desipramine binding can be regarded as “specific” binding, and this binding fraction may represent the substrate recognition site for noradrenaline uptake. Assuming that one molecule of desipramine binds to each carrier molecule, the turnover number for the noradrenaline carrier was calculated to be 20/min, i.e., the duration of one transport cycle was 3 s.  相似文献   

17.
Some key properties of the binding of [3H]nitrendipine, an analogue of the 1,4-dihydropyridine, nifedipine, to a plasma membrane enriched microsomal fraction from the rat liver are described. Specific binding was saturable, linear with protein concentration, and reversible. The apparent equilibrium dissociation constant, KD, was 4.20 +/- 0.22 nM and the maximum density of binding, Bmax, was 3.02 +/- 0.17 pmol/mg of protein determined from Scatchard analysis of binding at 10 degrees C. Inhibition of binding was specific for dihydropyridines with competitive inhibition being noted with nifedipine and 4-chloronifedipine, as well as BAY K-8644, a calcium channel agonist. A biphasic displacement curve was recorded for methoxy verapamil (D-600), and a triphasic competition curve with lanthanum (La3+), and diltiazem demonstrated competitive kinetics. The high affinity binding site for nitrendipine in the liver, although having some similar properties to those sites described in skeletal muscle, would appear to be distinctive with respect to its unique sensitivity to D-600 and diltiazem. We speculate that this binding site may represent a Ca2+ channel responsible for regulating Ca2+ influx and hepatic glycogenolysis.  相似文献   

18.
The specific binding of L-[3H]glutamate was investigated in the presence and the absence of sodium ions in freshly prepared membranes from rat hippocampus. Sodium ions were found to have a biphasic effect; low concentrations induced a marked inhibition of the binding (in the range 0.5-5.0 mM), whereas higher concentrations resulted in a dose-dependent stimulation of binding (in the range 10-150 mM). These results permit the discrimination of two binding sites in hippocampal membranes. Both Na+-independent and Na+-dependent binding sites were saturable, exhibiting dissociation constants at 30 degrees C of 750 nM and 2.4 microM, respectively, with Hill coefficients not significantly different from unity, and maximal number of sites of 6.5 and 75 pmol/mg protein, respectively. [3H]Glutamate binding to both sites reached equilibrium between 5 and 10 min and was reversible. The relative potencies of a wide range of compounds, with known pharmacological activities, to inhibit [3H]glutamate binding were very different for the Na+-independent and Na+-dependent binding and suggested that the former sites were related to post-synaptic glutamate receptors, whereas the latter were related to high-affinity uptake sites. This conclusion was also supported by the considerable variation in the regional distribution of the Na+-dependent binding site, which paralleled that of the high-affinity glutamate uptake; the Na+-independent binding exhibited less regional variation.  相似文献   

19.
Characterization of azadirachtin binding to Sf9 nuclei in vitro   总被引:1,自引:0,他引:1  
[22,23-(3)H(2)]dihydroazadirachtin was incorporated by Sf9 cells in culture and was bound specifically to the nuclear fraction. The observed association constant of the binding of the radioligand to a purified nuclear fraction was determined to be 0.037 +/- 0.008 min(-1) using a one-phase exponential association equation, and binding appeared to be to a single population of sites. The binding was essentially irreversible, and the dissociation constant was estimated to be 0.00065 +/- 0.00013 min(-1). An association rate constant of 7.3 x 10(6) M(-1) min(-1) was calculated from these data. Binding was saturable, and the receptor number and affinity were determined as B(max) = 23.87 +/- 1.15 pmol/mg protein, K(d) = 18.1 +/- 2.1 nM. The order of potency of semisynthetic azadirachtin analogues for competition for the binding site was as follows (IC(50) in parentheses): azadirachtin (1.55 x 10(-8) M) > dihydroazadirachtin (3.16 x 10(-8) M) > dansyl dihydroazadirachtin (7.40 x 10(-8) M) > DNP-azadirachtin (7.50 x 10(-8) M) > biotin dihydroazadirachtin (1.27 x 10(-7) M) > 11-methoxy 22,23-dihydroazadirachtin (6.67 x 10(-7) M). [Originally published in Volume 34, Archives of Insect Biochemistry and Physiology, 34:461-473 (1997).] Copyright 1997 Wiley-Liss, Inc.  相似文献   

20.
In cultured normal human skin fibroblasts specific and saturable binding sites for triiodothyronine (T3) have been revealed. In fact radiolabelled T3 binds rapidly to intact cells with maximum uptake after 1 hour, while nuclear binding is delayed, the equilibrium being reached after 2 hours. In intact cells it is possible to identify a single binding site for 125I-T3, with a Ka = 1.8 X 10(10)M-1 and Ro = 1.25 X 10(-11)M, similarly in nuclei it was possible to identify a single binding site of Ka = 8.8 X 10(9)M-1 and Ro = 2.3 X 10(-11)M. Intact human fibroblasts take up thyroxine (T4) even more rapidly than T3, with maximum after 5 min, showing a lower affinity for T4 than for T3 and a negligible specific and saturable binding sites for T4, the presence of a cellular transport system for T4 may be hypothesized, considering that iodothyronine cellular binding is increased by preincubation with low doses of T4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号