首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The U.S. Environmental Protection Agency (USEPA) has been reviewing several approaches to testing and risk assessment related to implementation of the Food Quality Protection Act (FQPA) and the Amendments to the Safe Drinking Water Act (SDWA), both signed into law in 1996. Based on recommendations from a review of issues related to children's health protection under these laws, the USEPA established the RfD Technical Panel to evaluate in depth the current reference dose (RfD) and reference concentration (RfC) process in general, and in particular with respect to how well children and other potentially sensitive subpopulations are protected. The RfD Technical Panel also was asked to consider scientific issues that have become of greater concern in RfD and RfC derivation (e.g., neurotoxicity, immunotoxicity), and to raise issues that should be explored or developed further for application in the RfD/RfC process. This paper provides the current status of the activities of the RfD Technical Panel. The Technical Panel has recommended that acute, short- term, and intermediate reference values should be set for chemicals, where possible, and that these values should be incorporated into the USEPA's Integrated Risk Information System (IRIS) Database. A review of current testing procedures is underway, including the endpoints assessed, life stages covered by exposure and outcome evaluation, and information that can be derived from current protocols on various durations of exposure. Data gaps identified for risk assessment include the types of pharmacokinetic data that should be collected, especially for developmental toxicity studies, the impact of aging on toxic responses occurring after early exposure as well as concomitant with exposure in old age, and information available on latency to response. The implications of the RfD Technical Panel's recommendations for various uncertainty factors are also being explored.  相似文献   

2.
    
A number of programs within the U.S. Environmental Protection Agency (USEPA) currently set less-than-lifetime exposure limits in addition to the chronic reference dose (RfD) and reference concentration (RfC). A review of procedures within the USEPA for setting reference values suggests that less-thanlifetime reference values should be more routinely developed and captured in the USEPA's online IRIS database where chronic RfDs and RfCs, as well as cancer slope factors, are currently available. A review of standard testing study protocols was conducted to determine what data were available for setting acute, short-term, and longer-term reference values, as well as chronic values. This review was done from the point of view of endpoints assessed for specific organ systems (both structural and functional), life stages covered by exposure and outcome, durations of exposure covered and the outcomes evaluated for each, and evaluation of latency to response and/or reversibility of effects. This review revealed a number of data gaps and research needs, including the need for an acute and/or short-term testing protocol that can be used to set acute and shortterm reference values, a strategy for when to conduct more extensive testing based on initial screening data or other information (e.g., chemical class, pharmacokinetics, mode of action), additonal standard testing guidlines protocols to allow more complete assessment of certain organ systems and life stages, development of pharmacokinetic data for different life stages, toxicity related to aging, and latency to response, particularly long-term latency as a result of developmental exposures. The implications of this review are discussed relative to characterizing hazard data for setting reference values, and the potential effects on uncertainty factors and low-dose extrapolation.  相似文献   

3.
The derivation of the uncertainty factors used in the construction of reference doses for 61 chemicals of regulatory concern to the state of New Jersey were evaluated. Frequency of use of uncertainty factor variables was enumerated with the aim of providing a guide to existing methodology in the analysis of critical studies by the United States Environmental Protection Agency.  相似文献   

4.
Based on imperfect data and theory, agencies such as the United States Environmental Protection Agency (USEPA) currently derive “reference doses” (RfDs) to guide risk managers charged with ensuring that human exposures to chemicals are below population thresholds. The RfD for a chemical is typically reported as a single number, even though it is widely acknowledged that there are significant uncertainties inherent in the derivation of this number.

In this article, the authors propose a probabilistic alternative to the EPA's method that expresses the human population threshold as a probability distribution of values (rather than a single RfD value), taking into account the major sources of scientific uncertainty in such estimates. The approach is illustrated using much of the same data that USEPA uses to justify their current RfD procedure.

Like the EPA's approach, our approach recognizes the four key extrapolations that are necessary to define the human population threshold based on animal data: animal to human, human heterogeneity, LOAEL to NOAEL, and subchronic to chronic. Rather than using available data to define point estimates of “uncertainty factors” for these extrapolations, the proposed approach uses available data to define a probability distribution of adjustment factors. These initial characterizations of uncertainty can then be refined when more robust or specific data become available for a particular chemical or class of chemicals.

Quantitative characterization of uncertainty in noncancer risk assessment will be useful to risk managers who face complex trade-offs between control costs and protection of public health. The new approach can help decision-makers understand how much extra control cost must be expended to achieve a specified increase in confidence that the human population threshold is not being exceeded.  相似文献   


5.
Epidemiological studies of workers in the nickel industry, animal exposure studies, and reports on the potential mechanisms of nickel-induced toxicity and carcinogenicity indicate that only crystalline sulfidic nickel compounds have been clearly established as carcinogenic or potentially carcinogenic in humans. This observation indicates the need to modify and update regulatory approaches for nickel to reflect noncancer toxicity values for some individual nickel species. Analysis of nickel compounds in residual oil fly ash (ROFA) indicates that sulfidic nickel compounds (e.g., nickel subsulfide, nickel sulfide) are not present. Thus, the potential for emission of carcinogenic nickel compounds from residual oil fly ash appears to be low. Preliminary reference concentrations (RfCs) for a number of nickel compounds, based on non-carcinogenic endpoints, are proposed on the basis of the benchmark dose approach in conjunction with NTP data for nickel species.  相似文献   

6.
Children, particularly neonates, can be biologically more sensitive to the same toxicant on a body weight basis than adults. Current understanding of the rates of maturation of metabolism and evidence from case studies indicate that human infants up to 6 months of age typically lack the capacity to detoxify and eliminate substances as readily as adults. For most chemicals, the infant physiologic systems usually produce higher blood levels for longer periods. The newborn's metabolic capacity rapidly matures and, by 6 months of age, children are usually not more sensitive than adults based on their pharmacokinetic competence. Whether children are at greater risk from chemical exposures is another question. Drawing conclusions about the ability of the U.S. Environmental Protection Agency's intraspecies (UFH) and database (UFD) uncertainty factors to protect children on the basis of the modest data available is challenging. However, virtually all studies available suggest that a high percentage of the population, including children, is protected by using a 10-fold UFH or by using a 3.16-fold factor each for toxicokinetic and toxicodynamic variability. Based on specific comparisons for newborns, infants, children, adults and those with severe disease, the population protected is between 60% and 100%, with the studies in larger populations that include sensitive individuals suggesting that the value is closer to 100%. UFD is likewise protective when used with databases that are missing substantive studies.  相似文献   

7.
The potential application of categorical (i.e., species, pathway, or group specific) defaults for several components of uncertainty relevant to development of tolerable or reference concentrations/doses is considered-namely, interspecies variation and adequacy of database. For the former, the adequacy of allometric scaling by body surface area as a species-specific default for oral tolerable or reference doses is considered. For the latter, the extent to which data from analyses of subchronic:chronic effect levels, LOAELs/NOAELs, and critical effect levels for complete versus incomplete datasets informs selection of defaults is examined. The relative role of categorical defaults for these aspects is considered in the context of the continuum of increasingly data-informed approaches to characterization of uncertainty and variability that range from default (“presumed protective”) to “biologically based predictive”.  相似文献   

8.
Tenfold uncertainty factors have been used in risk assessment for about 40 years to allow for species differences and inter-individual variability. Each factor has to allow for toxicokinetic and toxicodynamic differences. Subdividing the 10-fold factors into kinetic and dynamic defaults, which when multiplied give a product of 10, offers a number of advantages. A major advantage is that chemical-specific data can be introduced to replace one or more of the default subfactors, hence contributing to a chemical-related overall factor. Subdivision of the 10-fold factors also facilitates analysis of the appropriateness of the overall 10-fold defaults, and the development of a more refined approach to the use of uncertainty factors.  相似文献   

9.
    
PurposeThe aim of this study was to assess patient exposure data and operator dose in coronary interventional procedures, when considering patient body-mass index and procedure complexity.MethodsTotal air kerma area product (PKA), Air-Kerma (AK), Fluoroscopy time (FT), operator dose and patient body-mass index (BMI) from 97 patients’ procedures (62 coronary angiography (CA) and 35 Percutaneous Coronary Intervention (PCI) were collected for one year. For PCI procedures, also the complexity index-CI was collected. Continuous variables for each of the 2 groups procedures (CA and PCI) were compared as medians with interquartile range and using Mann-Whitney U test. Multiple group data were compared using Kruskal-Wallis test (significance: p < 0.05).ResultsMedian PKA was 63 and 125 Gy cm2 for CA and PCI respectively (p < 0.001); FT was 3 and 14 min, respectively (p < 0.001). PKA and FT significantly increased (p < 0.05) with BMI class for CA procedures. PKA and FT also increased in function of CI class for PCI, thought significantly only for FT (p < 0.001), possibly because of the low number of PCI procedures included; cine mode contributed most to PKA. Significant dose variability was observed among cardiologists for CA procedures (p < 0.001).ConclusionsDose references levels for PKA and FT in interventional cardiology should be defined - on a sufficient number of procedures- in function of CI and BMI classes. These could provide an additional tool for refining a facility’s quality assurance and optimization processes. Dose variability associated with cardiologists underlines the importance of continuous training.  相似文献   

10.
    
Regulatory decisions should be made in the most expert and informed way since they are precipitated by real and perceived threats to public health, under the glare of public scrutiny. The development of environmental regulations require a three‐step paradigm, collectively called risk analysis. This paper will address the risk assessment practices required under the Safe Drinking Water Act (SDWA) Amendments of 1986 to determine a Maximum Contaminant Level Goal (MCLG, nonenforceable health goal) which should result in no known or anticipated health effects, and allows adequate margin of safety. The end product of this risk assessment, risk characterization, and risk management encompassing control options and nonrisk analysis are combined to derive the Maximum Contaminant Level (MCL, enforceable standard). Furthermore, this paper discusses the U.S. Environmental Protection Agency's efforts in exploring new and improved noncancer risk assessment approaches providing the basis for MCLGs for the protection of human health.  相似文献   

11.
The current guideline for risk assessment of chemicals having a toxic end point routinely uses the reference dose (RfD) approach based on uncertainty factors of 10. With this method the quality of individual risk assessment varies among chemicals, often resulting in either an over‐ or under‐estimation of adverse health risk. The purpose of this investigation is to evaluate whether the magnitude of the 10X uncertainty factors have scientific merit against data from published experimental studies. A compilation and comparison of ratios between LOAEL/NOAEL (Lowest Observed Adverse Effect Level/No Observed Adverse Effect Level), subchronic/chronic, and animal/human values were made. The results of the present investigation revealed that the use of default factors could be over‐conservative or unprotective. More reasonable estimates of the risk to human health would result in a reduction of unnecessary, and expensive over‐regulation. In addition to the LOAEL to NOAEL, and subchronic to chronic ratios, the adequacy of uncertainty factors for animal to human extrapolations were examined. Although a 10‐fold uncertainty factor (UF) is most commonly used in the risk assessment process, an examination of the literature for the compounds presented here suggests that the use of different values is scientifically justifiable.  相似文献   

12.
We have analyzed the methylmercury exposures of native women consuming fish from a reservoir and two lakes in British Columbia. Probability density functions representing methylmercury dose were generated using reasonable distributions for exposure parameters. Sensitivity analyses were performed to assess the impact of alternative parameter values on the exposure estimates. The effect of ignoring variability and uncertainty in exposure was also assessed. Calculated mean daily doses of methylmercury for the target populations were compared to the estimated average dose for the general population. We also determined the percentages of the native women populations with exposures exceeding current guidance values as well as published thresholds for neurological effects. The analysis demonstrates the importance of better characterizing the low dose effects of methylmercury, as the predicted doses fall in the range of recommended maximum daily doses but well below the higher estimates of the effect threshold.  相似文献   

13.
    
This paper focuses on the radiation‐damage effects when applying the same total X‐ray dose to protein crystals at different dose rates. These experiments have been performed on both a selenomethionated protein and on bovine trypsin using dose rates that span nearly two orders of magnitude. The results show no clear dose‐rate effect on the global indicators of radiation damage, but a small measurable dose‐rate effect could be found when studying specific radiation damage. It is hypothesized that this observed dose‐rate effect relates to differences in the steady‐state free‐radical concentration.  相似文献   

14.
The Canadian Environmental Protection Act (CEPA) authorizes the Ministers of the Environment and of Health in Canada to investigate a wide variety of substances that may contaminate the environment and cause adverse effects on the environment and/or on human health. Under the Act, assessments have been completed for 44 environmental contaminants on the first Priority Substances List (PSL) and are relatively advanced for 25 compounds on the second PSL. The principles developed for the application of uncertainty factors in assessment of risks to human health for Priority Substances under CEPA are outlined, with emphasis on those aspects which are somewhat unique and/or evolving. The interface of developments in the Priority Substances program with an initiative of the International Programme on Chemical Safety in this area to effect greater harmonization of approaches is also described.  相似文献   

15.
Human beta-endorphin (beta h-EP) analogs of variable chain lengths have been investigated for their potency in inhibiting analgesia induced by beta h-EP or by the potent opiate etorphine. It was found that beta h-EP-(1-28) inhibits the analgesic effect of beta h-EP and etorphine when co-injected intracerebroventricularly into mice. Antagonism by competition at same opioid receptor subtypes is suggested from parallel shifts of the dose-response curve of etorphine or beta h-EP in the presence of increasing doses of beta h-EP-(1-28). On a molar basis, beta h-EP-(1-28) is nearly 10 times more potent than naloxone. The reduction of the chain length from residues 1-28 to 1-27 lowered the antagonist potency while further reduction of the peptide chain led to a complete loss of inhibitory activity. From comparison of the opioid-receptor binding affinity, analgesic activity and antagonist potency, it is concluded that the C-terminus of beta-EP is critical to the biological efficacy of the molecule and that the antagonist activity of C-terminal deletion analogs is probably mediated through residues 27 and 28.  相似文献   

16.
    
Toxicity tests are widely used to set “acceptable” levels of chemical exposure. Different organizations have identified a base set of tests specifying a mix of endpoints, durations, and species to be tested. A specific test and endpoint is chosen as the basis for calculation of human health risk values like reference doses (RfDs). This study empirically evaluates the data and choices made in setting acute and chronic RfDs for 352 conventional pesticides. The results suggest that for Acute, Acute-Female Specific, and Chronic RfDs one test is used far more than others. Ninety-six percent of the 116 Acute Female-Specific RfDs relied on a developmental toxicity test and 78% of Chronic RfDs used the chronic bioassay. Tests in rats were used far more often than other species in all RfD calculations. For all types of RfDs a total uncertainty factor of 100 was most common although values as low as 1 and as high as 3000 were seen. These results provide insights not only into the science policy frameworks used, but also into ways toxicity testing and risk assessment may be streamlined and made more efficient.  相似文献   

17.
18.
    
Available toxicology datasets provide a unique opportunity to validate some of the currently used Uncertainty Factors in the development of acceptable exposure levels for noncancer effects. Toxicity studies from two separate sources, the FAO/WHO database on pesticides (1978–1987) and the Monsanto database (through 1988) were chosen to evaluate three of the five currently used Uncertainty Factors. Interspecies differences in NOELs between the three mammalian species evaluated are equal to or less than a factor of 10 for both the FAO/WHO data and the Monsanto data in greater than 90% of the cases evaluated. Median values for the comparison of interspecies NOELs were 3.0 or less for all comparisons except the comparison between the mouse and rat for the Monsanto dataset where the median value was 7.5. Analyses of the Monsanto toxicity database show that the reprotoxicity NOELs were always equivalent to or higher than the chronic or subchronic NOELs for the same material. Therefore, even without conduct of a specific study to address reproductive effects, reasonable protection from adverse reproductive effects can be afforded by use of either subchronic or chronic study NOELs without application of UFD. The median ratio of subchronic NOELs and chronic NOELs was 4, and for a majority of the studies the difference between the NOELs was within one order of magnitude. Our analysis aids in validating the assumption that the upperbound for individual uncertainties maybe accounted for by use of 10‐fold uncertainty factors. However, the current U.S. Environmental Protection Agency (USEPA) reference doses/concentrations may be overly conservative because upperbounds of each of the uncertainty factors are used and each of the uncertainty factors are considered to be independent variables. Because uncertainties are probably not independent variables, the influence of compounding upperbounds when multiple uncertainty factors are used is generally only considered when four or more areas of uncertainty are outstanding. When multiple uncertainties exist, we recommend upperbound estimates only be used for the first two Uncertainty Factors, and median values be used to account for the remaining uncertainties.  相似文献   

19.
Noncancer risk assessments are generally forced to rely on animal bioassay data to estimate a Tolerable Daily Intake or Reference Dose, as a proxy for the threshold of human response. In cases where animal bioassays are missing from a complete data base, the critical NOAEL (no-observed-adverse-effect level) needs to be adjusted to account for the impact of the missing bioassay(s). This paper presents two approaches for making such adjustments. One is based on regression analysis and seeks to provide a point estimate of the adjustment needed. The other relies on non-parametric analysis and is intended to provide a distributional estimate of the needed adjustment. The adjustment needed is dependent on the definition of a complete data base, the number of bioassays missing, the specific bioassays which are missing, and the method used for interspecies scaling. The results from either approach can be used in conjunction with current practices for computing the TDI or RfD, or as an element of distributional approaches for estimating the human population threshold.  相似文献   

20.
    
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf.Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf.The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAPA = 10.7 Gy cm2, TfA = 4.9 min; KAPB = 7.5 Gy cm2, TfB = 5.0 min; KAPC = 19.0 Gy cm2, TfC = 7.3 min; KAPD = 52.4 Gy cm2, TfD = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p-values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p-values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf1.282) with R2 = 0.85.The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号