首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting the behavior, fate, and transport potential of a herbicide in any soil involves understanding the sorption characteristics. The sorption characteristics of glyphosate (GPS) on soil and their main components were investigated, indicating that the mineral phase is more important than the organic carbon in adsorption of GPS. Sorption isotherms were determined from each component using the batch equilibrium method at various concentrations (5, 10, 15, 20, 25, and 30 mg L?1) and sorption affinity of GPS was approximated by the Freundlich equation. The sorption strength K f [mg kg?1 (L mg?1)?n] across the various components ranged from 2.1–134.9 while the organic carbon-normalized Freundlich sorption capacity values, K foc, ranged from 1.28–3.53 mg kg?1-OC/(mg L?1)n. Infrared Fourier transform spectroscopy (FTIR) of the components showed significant structural differences. The results suggest that the presence of the oxides and hydroxides iron, in particular in soil solutions, enhanced GPS adsorption. They also suggest that reduction in OC% due to various treatments may enhance the remobilization of GPS into the aqueous phase (i.e., groundwater), though at different rates. Comparatively, contribution of surface area to the adsorption of GPS on the various components proved more significant than contents of organic carbon.  相似文献   

2.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

3.
Phosphorus (P) loss from land can impair surface water quality. Losses can occur from soil and plant components. While it is known that P losses increase with soil P concentration, it is not known how losses from pasture plants vary with soil P concentration or between different forages. We examined total P and filterable reactive P (FRP) in water extracts of plant shoots, used as a measure of potential P loss to surface runoff, in different forage species relative to soil P concentration in field trials and a glasshouse experiment. The mean total P concentration of 16 forage species in grazed field plots was greater (P?<?0.01; LSD05?=?117 mg kg?1) in legumes (3,480 mg kg?1) than for grasses (3,210 mg kg?1). Total plant P concentrations of grasses and legumes increased with soil Mehlich-3 P concentrations in both glasshouse and field trials with concentrations close to 6,000 mg kg?1 in arrowleaf clover at 680 mg kg?1 Mehlich-3 soil P. FRP in water extracts of plant shoots increased relative to plant total P as soil Mehlich-3 P increased, with the greatest concentrations shown by crimson clover and arrowleaf clover. Analysis of water extracts of ryegrass and clover herbage from a field trial showed that while FRP was increasing, phytase-available-P decreased significantly from about 70% of filterable unreactive P at the lowest Mehlich-3 P concentrations, to close to zero at 200 mg kg?1 Mehlich-3 P. The wide variation, and enrichment of FRP in water extracts and total P with increasing Mehlich-3 P among species, indicates that cultivar and site selection and sward management provide a potential option to mitigate P loss to surface waters.  相似文献   

4.
Tang  C. 《Plant and Soil》1998,199(2):275-282
This study examined the effect of K (as K2SO4) supply on acid production under N2-fixing plants of lupin (Lupinus angustifolius L. cv. Gungurru) and clover (Trifolium subterraneum L. cv. Dalkeith) grown in a K-deficient soil with a low pH buffer capacity for 55 days in the glasshouse at 20/12 °C (day/night). Increasing K supply up to 240 mg K kg-1 soil markedly increased plant growth of both species but clover growth was more responsive than lupin. Growing plants for 55 days decreased soil pH by 0.65–0.85 units under lupin and 0.45–0.83 units under clover. The amounts of H+ produced per kg biomass (specific acid production) were the highest at the nil K supply, generally decreased with increasing K level up to 30 mg K kg-1 under lupin and up to 120 mg K kg-1 soil under clover and only slightly increased with further increasing K under lupin. Increasing K2SO4 supply proportionally increased plant uptake of K and SO 4 2- but generally decreased concentrations of Ca, Mg, Na, P and Cl. Specific acid production correlated well with concentrations of excess cations and ash alkalinity, and total acid production was strongly correlated with total excess cations and total ash alkalinity in plants. These relationships were not affected by K treatment and species. Specific acid production also correlated with plant Ca concentration but not with K concentration. In addition, lupin and clover extruded similar amounts of H+ per kg biomass produced. It is suggested that application of K2SO4 does not have a significant impact on acid production by lupin and clover.  相似文献   

5.
Two-year potato rotations were evaluated for their effects on soil mineralizable N and soil N supply. Pre-plant soil samples (0–15 cm) collected from the potato year after seven rotation cycles were used to estimate soil mineralizable N using a 24 week aerobic incubation. Potentially mineralizable N (N 0 ) ranged from 102 to 149 kg N ha?1, and was greater after pea/white clover and oats/Italian ryegrass than after oats by an average of 35 and 22%, respectively. Labile, intermediate and stable mineralizable N pools were increased after pea/white clover compared with oats, whereas only the stable mineralizable N pool was increased after oats/Italian ryegrass. Potato plant N uptake with no fertilizer applied was greater in potato-pea/white clover compared with the three other rotations (126 vs. average of 67 kg N ha?1). Choice of rotation crop in potato production influences both the quantity and quality of soil mineralizable N.  相似文献   

6.
Carbon (C) added to soil as organic matter in crop residues and carbon emitted to the atmosphere as CO2 in soil respiration are key determinants of the C balance in cropland ecosystems. We used complete and comprehensive county-level yields and area data to estimate and analyze the spatial and temporal variability of regional and national scale residue C inputs, net primary productivity (NPP), and C stocks in US croplands from 1982 to 1997. Annual residue C inputs were highest in the North Central and Central and Northern Plains regions that comprise ~70% of US cropland. Average residue C inputs ranged from 1.8 (Delta States) to 3.0 (North Central region) Mg?C?ha?1?year?1, and average NPP ranged from 3.1 (Delta States) to 5.4 (Far West region) Mg?C?ha?1?year?1. Residue C inputs tended to be inversely proportional to the mean growing season temperature. A quadratic relationship incorporating the growing season mean temperature and total precipitation closely predicted the variation in residue C inputs in the North Central region and Central and Northern Plains. We analyzed the soil C balance using the crop residue database and the Introductory Carbon Balance regional Model (ICBMr). Soil C stocks (0–20?cm) on permanent cropland ranged between 3.07 and 3.1?Pg during the study period, with an average increase of ~4?Tg?C?year?1, during the 1990s. Interannual variability in soil C stocks ranged from 0 to 20?Tg?C (across a mean C stock of 3.08?±?0.01?Pg) during the study period; interannual variability in residue C inputs varied between 1 and 43?Tg C (across a mean input of 220?±?19?Tg). Such interannual variation has implications for national estimates of CO2 emissions from cropland soils needed for implementation of greenhouse gas (GHG) mitigation strategies involving agriculture.  相似文献   

7.
Degradation of Metolachlor in Tobacco Field Soil   总被引:2,自引:0,他引:2  
The extensive use of metolachlor to control weeds in tobacco fields in China has aroused concern about its environmental fate. The aim of this study was to investigate the degradation and residue fate of metolachlor in tobacco field soil (silt loam) under laboratory and field conditions. In laboratory experiments, metolachlor in bulk soil exhibited fast degradation in a temperature range from 10 to 35°C and a soil moisture level of 20–80%, with half-lives (T1/2) from 66.7 to 28.8 days. The degradation rate of metolachlor decreased as the application dose increased. Owing to higher microbial populations and enzymatic activities, metolachlor rapidly dissipated in rhizosphere soil as compared to bulk soil. Field persistence of metolachlor was evaluated in the same soil during the tobacco (Nicotiana tabacum K326) growing season in 2012 and 2013. The dissipation of metolachlor followed the first-order kinetics and its T1/2 values were 11.7–13.5 days in soil and 9.0–9.6 days in green tobacco leaves, respectively. At harvest time, the residual levels of metolachlor in soil and green tobacco leaves were in the range of 0.626–1.623 and 0.083-0.481 mg kg?1, respectively. These findings might have practical implications for the fate of metolachlor residue in tobacco fields. Environmental factors, especially temperature and moisture, should be considered in combination with the appropriate application dose of metolachlor for achieving satisfactory weed-control efficacy, reducing runoff, and minimizing effects on environmental quality.  相似文献   

8.
The critical value of soil Olsen-P is the point above which the probability of crop yield response to fertilizer P is small or nil. Determining this critical value is fundamental when making appropriate P fertilizer recommendations. In this study, the critical values were determined for continuous maize (Zea mays L.)-winter wheat (Triticum aestivum L.) cropping systems from a 15-year field experiment across three sites in China using linear-linear, linear-plateau and Mitscherlich models. The mean critical values for maize using the three models ranged from 12.1 to 17.3 mg P kg?1 (average 15.3 mg P kg?1) and for winter wheat from 12.5 to 19.0 mg P kg?1 (average 16.3 mg P kg?1) among study sites. The mean critical value for maize was approximately 7% lower than that for winter wheat across all sites based on the three models. Critical values identified by the Mitscherlich model were 1.4 to 2.1 times those from linear-linear and 1.3 to 1.9 times of those from linear-plateau and were crop and site dependent. There was a significant negative correlation (P?<?0.05) between the mean critical value from the three models and the observed P uptake by either maize or wheat. Our study shows that the critical values can vary with sites, crops and models used, and thus caution should be taken when selecting the most appropriate one when making P fertilizer recommendations for agronomic return and to minimize chances of negative environment impact from overfertilization.  相似文献   

9.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

10.
Cadmium and cadmium compounds are water soluble, mobile in most soils, bio-available, and tend to bio-accumulate. A pot culture experiment was conducted on contaminated soil to study the influence of lime and organic matter on the mobility of cadmium in spinach and its rhizosphere soil. Application of lime (50% and 100% lime requirement) and organic matter (0.5 and 1% by weight of soil) to soil decreased the availability of Cd to the soil and plant throughout the crop growth. The highest diethylene triamine penta-acetic acid (DTPA) extractable Cd was 10.84 mg kg?1 in the treatment OM0 L0 (No application of organic matter and lime) at 20 days after sowing of spinach. Likewise, the highest Cd concentration in spinach roots and shoots were 19.80 and 17.0 mg kg?1 in the treatment OM0 L0 at 20 days after sowing. The Cd concentration in spinach roots and shoots were decreased by 63.23 and 71.88%, respectively, in the treatment OM1 L100 (application of FYM at 1.0% by weight of soil and lime at 100% lime requirement) after 60 days of growth. The lowest concentrations of Cd in the soil and plant after the harvest of the crop were 2.88 and 4.27 mg kg?1, respectively, in the treatment OM1 L100 and resulted in 65.75 and 71.55% decrease over control (OM0 L0). The highest total chlorophyll content of leaves was 2.19 mg kg?1 of fresh weight in the treatment OM1 L100 at 40 days of crop growth.  相似文献   

11.
Kahiluoto  Helena  Ketoja  Elise  Vestberg  Mauritz  Saarela  Into 《Plant and Soil》2001,231(1):65-79
The hypothesis of this study was that cumulative P fertilization decreases the contribution of arbuscular mycorrhiza (AM) to crop growth and nutrient uptake in Northern European field conditions. The modes of action of P fertilization were evaluated through effects on mycorrhization, crop dependence on AM, and AM fungal (AMF) community. Field studies were carried out within long-term experiments on soils with low and intermediate initial content of extractable P, where no P fertilization and 45 kg ha–1 a–1 P were applied for 20 years. AM effectiveness in terms of growth and nutrient uptake of flax, red clover and barley, percentage root length colonized by AMF, P response of flax, and spore densities and species composition of the AMF communities, were assessed. In the soil with low initial P supply, cumulative P fertilization decreased AM contribution to crop growth and nutrient uptake. The higher AM effectiveness in soil with no added P compensated the cumulative P fertilization (soil PH2O 2.5 v. 9.5 mg kg–1) for flax, but not completely for clover. In contrast, barley obtained no benefit from AM at harvest and only a slight benefit from cumulated P. In the soil with intermediate initial P supply, AM reduced growth of flax and barley, especially with no added P, and no response to AM was obtained on clover due to retarded mycorrhization. Cumulative P fertilization reduced yield losses of flax by AM (PH2O 18.8 v. 5.4 mg kg–1), because fertilization inhibited mycorrhization. In both soils, root colonization and spore density were decreased by cumulative P fertilization, but no changes in AMF species composition were observed.  相似文献   

12.
Previous greenhouse gas (GHG) assessments for the shrub willow biomass crops (SWBC) production system lacked quantitative data on the soil CO2 efflux (Fc). This study quantifies the mean annual cumulative Fc, the C sequestration in the above- and belowground biomass, and the carbon balance of the production system. We utilized four SWBC fields, which have been in production for 5, 12, 14, and 19 years. Two treatments were applied: continuous production (CP)—shrub willows were harvested, and stools were allowed to regrow, and tear-out (TO) (crop removal)—shrub willows were harvested, and stools were sprayed with herbicide following spring, crushed, and mixed into the soil. Mean annual cumulative Fc were measured using dynamic closed chambers (LI-8100A and LI-8150). Across different age classes, the mean cumulative Fc ranged from 27.2 to 35.5 Mg CO2 ha?1 year?1 for CP and 26.5 to 29.3 Mg CO2 ha?1 year?1 for TO. The combined carbon (C) sequestration of the standing above- and belowground biomass, excluding stems, ranged from 50.6 to 94.8 Mg CO2 eqv. ha?1. In the CP treatment, the annual C sequestration in the fine roots and foliage offsets the annual cumulative Fc. Across different age classes, C balances ranged from ?21.5 to ?59.3 Mg CO2 ha?1 for CP and 26.5 to 29.3 Mg CO2 ha?1 for TO. The GHG potential of SWBC is about ?36.3 Mg CO2 eqv. ha?1 at the end of 19 years, suggesting that the SWBC system sequesters C until termination of the crop.  相似文献   

13.
The growth and chemical composition of most plants are influenced by elevated CO2, but accompanying effects on soil organic matter pools and mineralization are less clearly defined, partly because of the short‐term nature of most studies. Herein we describe soil properties from a naturally occurring cold CO2 spring (Hakanoa) in Northland, New Zealand, at which the surrounding vegetation has been exposed to elevated CO2 for at least several decades. The mean annual temperature at this site is ≈ 15.5 °C and rainfall ≈ 1550 mm. The site was unfertilized and ungrazed, with a vegetation of mainly C3 and C4 grasses, and had moderate levels of ‘available’ P. Two soils were present ? a gley soil and an organic soil – but only the gley soil is examined here. Average atmospheric CO2 concentrations at 17 sampling locations in the gley soil area ranged from 372 to 670 ppmv. In samples at 0–5 cm depth, pH averaged 5.4; average values for organic C were 150 g, total N 11 g, microbial C 3.50 g, and microbial N 0.65 g kg?1, respectively. Under standardized moisture conditions at 25 °C, average rates of CO2‐C production (7–14 days) were 5.4 mg kg?1 h?1 and of net mineral‐N production (14 ?42 days) 0.40 mg kg?1 h?1. These properties were all correlated positively and significantly (P < 0.10) with atmospheric CO2 concentrations, but not with soil moisture (except for CO2‐C production) or with clay content; they were, however, correlated negatively and mainly significantly with soil pH. In spite of uncertainties associated with the uncontrolled environment of naturally occurring springs, we conclude that storage of C and N can increase under prolonged exposure to elevated CO2, and may include an appreciable labile fraction in mineral soil with an adequate nutrient supply.  相似文献   

14.
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha?1 yr?1 corn straw (CS) amendment, and 2.4 t ha?1 yr?1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg?1 grain) than that of Control (0.24 kg CO2‐Ckg?1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ckg?1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter.  相似文献   

15.
Conservation agriculture in its version of permanent raised bed planting with crop residue retention increases yields and improves soil characteristics, e.g. aggregate distribution, organic matter content, so it remained to be seen how greenhouse gas emissions and dynamics of C and N might be altered. The objective of this study was to investigate how conservation agriculture with permanent raised beds, tied ridges, i.e. dykes within the furrows to prevent water run-off, and residue retention affected greenhouse gas emissions. A field experiment was started in 1999 comparing permanent and conventionally tilled raised beds with different residue management under rain fed conditions. Soil was characterized and emissions of CH4, N2O and CO2 and dynamics of NH4 +, NO2 ? and NO3 ? were monitored in a laboratory experiment. The crop and tied ridges had no effect on soil characteristics and dynamics of C and N. Tilled beds reduced the water holding capacity (WHC) 1.1 times and increased conductivity 1.3 times compared to soil under nontilled beds with retention of all crop residues. The WHC, organic C, soil microbial biomass and total N were ≥1.1 larger in soil from nontilled beds where the crop residue was retained compared to where it was removed after only 6 years. The emission of CO2 was 1.2 times and production of NO3 ? 1.8 times larger in nontilled beds where the crop residue was retained compared to where it was removed. The CO2 emission was 1.2 times and the emission of N2O after 1 day 2.3 times larger in soil under tilled beds compared to nontilled beds with full residue retention, while the increase in concentration of NO3 ? was 0.05 mg N kg?1 soil in the former and 2.38 in the latter. We found that permanent raised bed planting with crop residue retention decreased emissions of N2O and CO2 compared to soil under conventionally tilled raised beds. Production of NO3 ? is larger in soil with permanent raised bed planting with crop residue retention compared to conventionally tilled raised beds.  相似文献   

16.
Legume‐containing leys are commonly used to improve soil fertility in the 2‐year conversion period from conventional to organic production. While in‐conversion land may be grazed, in stockless farming systems, land is effectively out of production, leading to a reduction in income and pressure on cash flow. The impacts of seven organic conversion strategies on the first organic crop (winter wheat) were previously reported. This study investigates the effect of the conversion strategies on the second (winter beans) and third (winter oats) organic crops, thereby extending the analysis throughout the first complete rotation. The strategies were (a) 2‐years’ red clover–ryegrass green manure, (b) 2‐years’ hairy vetch green manure, (c) red clover for seed production then a red clover–ryegrass green manure, (d) spring wheat undersown with red clover, then a red clover green manure, (e) spring oats, then winter beans, (f) spring wheat, then winter beans and (g) spring wheat undersown with red clover, then a barley–pea intercrop. Conversion strategy had a significant impact on organic bean yield, which ranged from 2.78 to 3.62 t ha?1, and organic oat yield, which ranged from 3.24 to 4.17 t ha?1. In the organic bean crop, weed abundance prior to harvest, along with soil texture, accounted for 70% of yield variation. For the oats, soil mineral nitrogen in November together with weed abundance in April accounted for 72% of the variation in yield. The impacts of conversion strategies on soil mineral nitrogen levels were still detectable 3 years after conversion. The results from this study indicate that the choice of conversion crop has important long‐term implications. More exploitative conversion strategies, that is those with a higher proportion of cash cropping, had an increased weed burden and decreased levels of soil mineral nitrogen, leading to reduced yields of beans and oats, 2 and 3 years after conversion.  相似文献   

17.
A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha?1 y?1 in grassland and ?0.84 tC ha?1 y?1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha?1 y?1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha?1 y?1 for the incorporating of straw to 1.50 tC ha?1 y?1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha?1 y?1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a ?0.05 tC ha?1 y?1 change whereas the rising CO2 concentrations gave a 0.01 tC ha?1 y?1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures.  相似文献   

18.
The rough outcomes of a long-term experiment in Kenya were (re-)interpreted using simple models to find causes of success or failure with regard to sustained soil productivity. A two- pools model calculated the development of soil organic matter, and a practical equation estimated the residual effect of fertilizer P. Relative mineralization rate was 4 and 8%?y?1 for original and newly formed soil organic carbon (SOC). Maize yielded 0.25 and 1.1 t?ha?1 per g?kg?1 of original and new SOC, respectively. Yields of fertilized maize increased initially as a result of increasing residual effects of applied P, but decreased later presumably because SOC declined to below a critical level of 16 g?kg?1. To maintain SOC above this level, about 10 tons of farmyard manure (dry matter) must be applied annually. Agronomic nutrient use efficiencies for fertilizer N and P were low, but the residual effect of P was high. The simple model outlined half a century ago adequately calculated build-up of new soil organic matter. The estimated residual effect of fertilizer P explained increasing crop responses to repeated P applications. The absence of data on nutrient uptake by the crop strongly limited the understanding of the experimental results.  相似文献   

19.
Selenium (Se) may be present in soils and sediments in high concentrations and yet not be mobile or available for plant uptake. Phytoremediation of Se by canola (Brassica napus) was evaluated in sediment from Kesterson Reservoir at three different depths (0 to 30, 30 to 60, 60 to 90?cm) under greenhouse and field conditions. In the greenhouse study, total soil Se concentrations at preplant ranged from 10 to 112?mg kg?1. Shoot Se concentrations of canola were 182, 53, and 19?mg kg?1 DM in the 0 to 30, 30 to 60, and 60 to 90?cm depths, respectively. Percentages of Se accumulated by canola relative to total Se loss in the soil at postharvest were as high as 24%. In the field study, total soil Se concentrations were as high as 26?mg kg?1 soil. Field-grown canola accumulated approximately 50?mg kg?1 DM, which accounted for less than 10% of total Se lost in the soil at postharvest. Phytoremediation of Se-laden soils under field conditions was about 50% of that observed under controlled greenhouse conditions. This relationship may be useful for prediction of field remediation operation using greenhouse generated data.  相似文献   

20.
A nitrogen-based model of maintenance respiration (Rm) would link Rm with nitrogen-based photosynthesis models and enable simpler estimation of dark respiration flux from forest canopies. To test whether an N-based model of Rm would apply generally to foliage of boreal and subalpine woody plants, I measured Rm (CO2 efflux at night from fully expanded foliage) for foliage of seven species of trees and shrubs in the northern boreal forest (near Thompson, Manitoba, Canada) and seven species in the subalpine montane forest (near Fraser, Colorado, USA). At 10°C, average Rm for boreal foliage ranged from 0.94 to 6.8μmol kg?1 s?1 (0.18–0.58 μmol m?2 s?1) and for subalpine foliage it ranged from 0.99 to 7.6 μmol kg?1 s?1 (0.28–0.64μmol m?2 s?1). CO2 efflux at 10°C for the samples was only weakly correlated with sample weight (r = 0.11) and leaf area (r = 0.58). However, CO2 efflux per unit foliage weight was highly correlated with foliage N concentration [r = 0.83, CO2 flux at 10°C (mol kg?1 s?1) = 2.62 × foliage N (mol kg?1)J, and slopes were statistically similar for the boreal and subalpine sites (P=0.28). CO2 efflux per unit of foliar N was 1.8 times that reported for a variety of crop and wildland species growing in warmer climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号