首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis The ferric ferricyanide reaction has been generally considered to depend on the reduction of ferricyanide to ferrocyanide and, in the presence of the ferric ion, the consequent production of Prussian Blue. In testing the ability of ferricyanide to prevent the azo-coupling reactions of enterochromaffin cells and of the noradrenaline islets of the adrenal medulla, ferricyanide proved to be an effective oxidant in alkaline solution, but failed to quinonize the two catechols below pH 6. Similar results are obtained in oxidative blocking of cutaneous sulphydryl sites against the ferric ferricyanide reaction and against staining by the mercaptide acid azo-coupling reaction of Lillie & Glenner (1965).Ferric ferricyanide solutions are used at pH 2–2.5 and the ferric ion is an effective quinonizing and thiol-oxidizing agent at this pH level; the ferricyanide ion is not. The ferric ferricyanide reaction depends on the reduction of ferric to ferrous ions in the presence of ferricyanide, with the production of Turnbull's Blue.  相似文献   

2.
Soil contamination with iron-cyanide complexes is a common problem at former manufactured gas plant (MGP) sites. Dissolution of the cyanide, from Prussian Blue (ferric ferrocyanide), creates an environmental hazard, whereas the risk of groundwater contamination depends on the stability of dissolved iron–cyanide complexes. Lack of a standard leaching method to determine the water-soluble (plant-available) cyanide fraction generates potential limitations for implementing remediation strategies like phytoremediation. Applicability of neutral solution extraction to determine the water-soluble cyanide fraction and the stability of Prussian Blue in surface and near-surface soils of an MGP site in Cottbus, undersaturated and unsaturated water conditions, was studied in column leaching and batch extraction experiments. MGP soils used in the long-term tests varied according to the pH (5.0–7.7) and the total cyanide content (40–1718 mg kg?1). Column leaching, after four months of percolation, still yielded effluent concentrations exceeding the German drinking water limit (> 50 μg L?1) and the solubility of Prussian Blue reported in the literature (< 1 mg L?1) from both alkaline and acidic soils. Long-term (1344 h) extraction of MGP soils with distilled water was sufficient to dissolve 97% of the total cyanide from the slightly alkaline soils and up to 78% from the acidic soils. Both experiments revealed that dissolution of ferric ferrocyanide under circum-neutral pH and oxic water conditions is a function of time, where the released amount is dependent on the soil pH and total cyanide content. Unexpectedly high and continuous solubility of Prussian Blue, both in acidic and slightly alkaline MGP soils, implies the need to introduce an additional cyanide fraction (“readily soluble fraction”) to improve and specify cyanide leaching methods. Long-term extraction of cyanide-contaminated soil in neutral solution seems to be a promising approach to evaluate the potential hazard of groundwater pollution at the MGP sites.  相似文献   

3.
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.  相似文献   

4.
Phytoplankton plasma membrane electron transport activity was determined by monitoring the reduction of the impermeant artificial electron acceptor ferricyanide in a range of diatoms. The results revealed that constitutive plasma membrane electron transport activity of marine diatoms is high compared with chlorophytes and higher plant cells. Diatom plasma membrane electron transport activity was not significantly increased by iron limitation. This lack of induction on iron limitation indicates that diatoms have an iron acquisition strategy that is distinct from chlorophytes and the dicotyledon higher plants that exhibit marked increases in plasma membrane ferricyanide reductase activity on iron limitation. The interaction of the constitutive plasma membrane electron transport with photosynthesis was also investigated. We found that 1) ferricyanide reduction at the plasma membrane was progressively inhibited in response to increasing irradiances; 2) the presence of extracellular ferricyanide, but not the reduced couple ferrocyanide, caused a marked inhibition of carbon fixation at high irradiance; and 3) extracellular electron acceptors ferricyanide and hexachloroiridate (but not ferrocyanide) induced an immediate and reversible decrease in fluorescence yields (Fo and Fm). The extent to which extracellular electron acceptors affected CO2 fixation, Fo, and Fm was related to the level of constitutive ferricyanide reductase activity, the species with highest ferricyanide reduction rates being most sensitive. The data suggest that consumption of electrons and/or reductant at the plasma membrane by external acceptors may compete directly with CO2 fixation for electrons, alter cytosolic‐chloroplast redox poise, and/or induce a redox‐signaling cascade that alters photosynthetic metabolism.  相似文献   

5.
Prussian blue has been widely used to localize iron in a variety of tissues at the light and electron microscopic level. In the present study, thin sections of human marrow and blood cells and rat duodenal cells were exposed to silver proteinate (SP) after staining en bloc with acid ferrocyanide (AF), with and without prior iron saturation using iron nitrilotriacetate (FeNTA). Silver deposition was observed over Prussian blue-reactive sites and significantly enhanced sites of minimal AF and FeNTA-AF staining. AF-SP stain deposits were present in the cytoplasmic matrix, granules, and occasionally on the surfaces of macrophages, monocytes, and erythroblasts. FeNTA-AF-SP stained additional cytoplasmic and surface sites in erythroblasts and stained neutrophil granules intensely. Duodenal epithelium from iron-loaded rats demonstrated strong AF-SP staining of ferric iron in microvilli, apical cytoplasmic matrix, and lateral membranes. Similar preparations from iron-replete rats stained sparsely; however, intense AF-SP staining was observed after iron saturation with FeNTA. SP similarly enhanced luminal ferrous iron deposits stained with acid ferricyanide in rats given intraluminal ferrous iron. AF-SP stain deposits were removed by exposure of thin sections to NH4OH, KCN, or HNO3 but were not affected by prior exposure to HIO4 or NaBH4, consistent with a silver cyanide or complex stain precipitate rather than reduced silver or silver ferriferrocyanide. SP enhancement of Prussian blue allows identification of reactive sites not readily visualized with AF or FeNTA-AF alone, and offers the potential for differentiating AF staining from other deposits or organelles of comparable density.  相似文献   

6.
These studies were designed to compare the effects of nitric oxide (NO) generating compounds with those of several iron containing, compounds which do not generate NO on glutamate receptor function. Stimulation of primary cultures of cerebellar granule cells with N-methyl-D-aspartate (NMDA) or kainate results in the elevation of intracellular calcium ([Ca2+]i) and cGMP and the release of glutamate. The iron containing compounds, sodium nitroprusside (SNP), potassium ferrocyanide (K4Fe(CN)6) and potassium ferricyanide (K3Fe(CN)6) decrease the NMDA-induced release of glutamate. SNP is the only compound of the above 3 agents which generates NO. A non-iron, NO generating compound, S-nitroso-N-acetylpenicillamin (SNAP), has no effect on the NMDA-induced glutamate release. Potassium ferrocyanide (Fe II), but not potassium ferricyanide (Fe III), blocks NMDA-induced cGMP elevations after 3 min exposure times. This contrasts with the NO generating compounds (both SNP and SNAP) which elevate cGMP levels. Furthermore, both potassium ferrocyanide (Fe II) and SNP (Fe II) suppress the elevation of [Ca2+]i induced by NMDA but neither potassium ferricyanide (Fe III) nor SNAP are effective in this regard. These effects are also independent of cyanide as another Fe II compound, ferrous sulfate (FeSO4) is also able to suppress NMDA-induced elevations of [Ca2+]i SNP was unable to suppress kainate receptor functions. Collectively, these results indicate that Fe II, independently of NO, has effects on NMDA receptor function.  相似文献   

7.
Abstract: The addition of sodium nitroprusside (SNP) significantly inhibited binding of (+)-5-[3H]methyl-10,11-dihydro-5 H -dibenzo[ a,d ]cyclohepten-5,10-imine ([3H]MK-801) to an ion channel associated with the N -methyl- d -aspartate (NMDA) receptor in a concentration-dependent manner at concentrations of >1 µ M in rat brain synaptic membranes not extensively washed. However, neither S -nitroso- N -acetylpenicillamine nor S -nitroso- l -glutathione inhibited binding even at 100 µ M . Of the two compounds structurally related to SNP (II), similarly potent inhibition was induced by potassium ferrocyanide (II) but not by potassium ferricyanide (III). In addition, ferrous chloride (II) induced much more potent inhibition of binding than ferric chloride (III), at a similar concentration range. In contrast, iron chelators prevented the inhibition by ferrous chloride (II) without markedly affecting that by SNP (II) and potassium ferrocyanide (II). Pretreatment with ferrous chloride (II) also led to potent inhibition of [3H]MK-801 binding in a manner insensitive to subsequent addition of the iron chelators. Pretreatment with Triton X-100 resulted in significant potentiation of the ability of ferrous chloride (II) to inhibit [3H]MK-801 binding irrespective of the addition of agonists, moreover, although binding of other radioligands to the non-NMDA receptors was unaltered after pretreatment first with Triton X-100 and then with ferrous chloride (II). These results suggest that ferrous ions (II) may interfere selectively with opening processes of the NMDA channel through mechanisms entirely different from those underlying the inhibition by both SNP (II) and potassium ferrocyanide (II) in rat brain.  相似文献   

8.
Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments.  相似文献   

9.
The cytoprotective activity of F16BP has been documented in severe conditions such as convulsions, reperfusion injury, septic shock, diabetic complications, hypothermia-induced injury, UV-provoked skin damage and in other processes including apoptosis and excitotoxicity. F16BP shows very efficient cytoprotective activity in astroglial cells exposed to H2O2-provoked oxidative stress and during neuronal injury caused by hypoxic conditions. As most of the aforementioned processes involve iron activity-related conditions, we investigated the ferric and ferrous iron binding properties of F16BP under physiological conditions using 31P NMR and EPR spectroscopy. Our results indicate that cytoprotective F16BP activity is predominantly based on ferrous iron sequestration. 31P NMR spectroscopy of F16BP employing paramagnetic properties of iron clearly showed that F16BP forms stabile complexes with Fe2+ which was verified by EPR of another divalent cation—Mn2+. On the other hand, F16BP does not sequester ferric iron nor does it increase its redox activity as shown by 31P NMR and EPR spin-trapping. Therefore, F16BP may be beneficial in neurodegenerative and other conditions that are characterised by ferric iron stores and deposits.  相似文献   

10.
The reduced forms of cytochrome P-450cam and chloroperoxidase were examined by proton NMR spectroscopy. The pH and temperature dependences of the proton NMR spectra of both ferrous enzymes are reported. A series of alkyl mercaptide complexes of both synthetic and natural-derivative iron(II) porphyrins was also examined. The proton NMR spectra of these complexes facilitated the assignment of resonances due to the axial ligand in the model compounds on the basis of their isotropic shifts and multiplicities. Comparison of model compound data with that for the reduced enzymes supports assignment of the methylene protons for the axial cysteinate of ferrous cytochrome P-450cam and ferrous chloroperoxidase to proton NMR resonances at 279 and 200 ppm (pH 7.0, 298K), respectively. Differences in the active site structure of the two enzymes are further demonstrated by 15N-NMR spectroscopy of the cyanide complexes of the ferric forms.  相似文献   

11.
Plants take up iron as ferric chelates or, after reduction, as ferrous ions. Ferric reduction takes place at the plasma membrane of the root epidermis cells by a transmembrane redox system, which can be activated when iron is getting short. It is proposed that this inducible system, with NADPH as electron donor, is separate from a system, presumably present in all plant cells, which transports electrons from NADH or NADPH to ferricyanide, or,in vivo, oygen.  相似文献   

12.
Iron metabolism in anoxic environments at near neutral pH   总被引:29,自引:0,他引:29  
Anaerobic dissimilatory ferric iron-reducing and ferrous iron-oxidizing bacteria gain energy through reduction or oxidation of iron minerals and presumably play an important role in catalyzing iron transformations in anoxic environments. Numerous ferric iron-reducing bacteria have been isolated from a great diversity of anoxic environments, including sediments, soils, deep terrestrial subsurfaces, and hot springs. In contrast, only few ferrous iron-oxidizing bacteria are known so far. At neutral pH, iron minerals are barely soluble, and the mechanisms of electron transfer to or from iron minerals are still only poorly understood. In natural habitats, humic substances may act as electron carriers for ferric iron-reducing bacteria. Also fermenting bacteria were shown to channel electrons to ferric iron via humic acids. Whether quinones or cytochromes released from cells act as electron transfer components in ferric iron reduction is still a matter of debate. Anaerobic ferrous iron-oxidizing phototrophic bacteria, on the other hand, appear to excrete complexing agents to prevent precipitation of ferric iron oxides at their cell surfaces. The present review evaluates recent findings on the physiology of ferric iron-reducing and ferrous iron-oxidizing bacteria with respect to their relevance to microbial iron transformations in nature.  相似文献   

13.
The reaction between iron and cobalt tetrasulfonated phthalocyanines and globin results in the formation of the green complexes, as has been proved by difference spectroscopy. Spectrophotometric titration data indicate the formation of those complexes at the molar ratio 1:1. The complexes of ferrous, ferric and cobaltous tetrasulfonated phthalocyanines with globin have been isolated from the reaction mixtures by separation on Sephadex G-50 and precipitation of the protein fractions with ammonium sulfate. The visible spectra of these complexes are characterised by the main intensive peak at 641 nm, 678 nm, and 675 nm for ferric, ferrous and cobaltous derivatives, respectively. The new globin complexes have the property of reversible combination with oxygen and coordination with cyanide ions. It is evidence from the results of the spectrophotometric titrations of hemoglobin and methemoglobin with cobaltous tetrasulfonated phthalocyanine that iron protoporphyrins are displaced by this cobalt derivative; this suggests that phthalocyanine and porphyrin are bonded in a similar manner.  相似文献   

14.
Specific catalytic oxidation of oxymyoglobin (MbO(2)) and luminol by ferricyanide was studied in a flow-injection system. MbO(2) in different redox states (ferric and ferrous) was oxidized to Mb(Fe(III)) by ferricyanide, and then specific binding of the ferrocyanide anion to Mb(Fe(III)) to the His 119 (GH1) region accelerated the electron transfer between Mb(Fe(III)) and luminol, which produced a chemiluminescence (CL) signal at 425 nm. The increased CL emission was correlated with the myoglobin concentration in the range 0.16-7.5 microg/mL. Thermogravimetry and differential scanning calorimetry were used to investigate the temperature effects on this reaction. The results showed that the CL intensity in the presence of myoglobin changed considerably with heating in the range 15-50 degrees C, and the maximal CL intensity was observed at 40 degrees C, corresponding to the glass transition temperature of myoglobin. The effect of different ligands and interferences were also studied.  相似文献   

15.
Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is an obligatory prerequisite for iron uptake and is mediated by redox systems localized on the plasma membrane. Plasma membrane-bound iron reductase systems catalyze the transmembrane electron transport from cytosolic reduced pyridine nucleotides to extracellular iron compounds. Natural and synthetic ferric complexes can act as electron acceptors.This paper gives an overview about the present knowledge on iron reductase systems at the plant plasma membrane with special emphasis on biochemical characteristics and localisation.  相似文献   

16.
The results of recent research have shown that the bioleaching of sulfide minerals occurs via a two‐step mechanism. In this mechanism, the sulfide mineral is chemically oxidized by the ferric‐iron in the bioleaching liquor. The ferrous‐iron produced is subsequently oxidized to ferric‐iron by the microorganism. Further research has shown that the rates of both the ferric leaching and ferrous‐iron oxidation are governed by the ferric/ferrous‐iron ratio (i.e., the redox potential). During the steady‐state operation of a bioleach reactor, the rate of iron turnover between the chemical ferric leaching of the mineral and the bacterial oxidation of the ferrous‐iron will define the rate and the redox potential at which the system will operate. The balance between the two rates will in turn depend on the species used, the microbial concentration, the residence time employed, the nature of the sulfide mineral being leached, and its active surface area. The model described proposes that the residence time and microbial species present determine the microbial growth rate, which in turn determines the redox potential in the bioleach liquor. The redox potential of the solution, in turn, determines the degree of leaching of the mineral; that is, conversion in the bioleach reactor. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 671–677, 1999.  相似文献   

17.
The degradation of protoheme in the heme oxygenase reaction involves three oxidation steps: from protoheme to hydroxyheme, from hydroxyheme to a 688-nm substance, a protein-bound intermediate, and from the 688-nm substance to a biliverdin-iron complex. The 688-nm substance has a ferrous iron and it readily binds carbon monoxide to form a CO-complex, called the 638-nm substance (Yoshida, T., Noguchi, M., & Kikuchi, G. (1980) J. Biochem. 88, 557-563). The ferric 688-nm substance was prepared from the 638-nm substance by the addition of potassium ferricyanide together with aspiration to eliminate CO. The ferric 688-nm substance did not show any distinct absorption maximum in the red region of the absorption spectrum. The ferric 688-nm substance was readily reduced on the addition of the NADPH-cytochrome P-450 reductase system, but the ferric 688-nm substance could also be reduced spontaneously though at a very low rate. The ferrous 688-nm substance free from excess reducing agents was prepared by passing the 638-nm substance through a column of Sephadex G-25. The ferrous 688-nm substance was degraded to a biliverdin-iron complex much more rapidly in the presence of the NADPH-cytochrome P-450 reductase system than in its absence, indicating that a reducing equivalent is essential for the initiation of heme degradation even when starting from the ferrous 688-nm substance. Cyanide was found to bind to the ferrous 688-nm substance to form a stable compound; the cyanide compound formed could revert to neither the ferrous 688-nm substance nor the 638-nm substance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The wastes from some industrial processes and the tailings from gold mining contain elevated concentrations of cyanide, which reacts with iron in the media to form iron cyanide complexes. This research examined the transport and possible metabolism of ferrocyanide by two native Australian trees, blue mallee and sugar gum, and by sorghum. Hydroponic studies using 15N-labeled ferrocyanide showed that both tree species transported ferrocyanide into roots and displayed significant increases in 15N enrichment and concentration with no evidence of phytotoxicity. A subsequent experiment with blue mallee and membrane-transport inhibitors showed that 15N enrichment was significantly inhibited in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that ferrocyanide uptake is mediated partly by H+-symporters. A study of the time dependence of 15N translocation showed a rapid equilibration of 15N from ferrocyanide in the root of blue mallee, accompanied by a slow increase in shoot 15N, suggestive of the metabolism of ferrocyanide in plant roots. A similar experiment with sorghum showed a more rapid translocation of 15N, suggesting that the transport and/or metabolism of ferrocyanide by roots of this species may differ. The results offer additional incentive for the use of these species as vegetative cover over cyanidation wastes and for cyanide phytoremediation.  相似文献   

19.
The dimeric hemoglobin isolated from Scapharca inaequivalvis, HbI, is notable for its highly cooperative oxygen binding and for the unusual proximity of its heme groups. We now report that the oxidized protein, an equilibrium mixture of a dimeric high spin aquomet form and a monomeric low spin hemichrome, binds ferrocyanide tightly which allows for internal electron transfer with the heme iron. Surprisingly, when ferricyanide-oxidized HbI is exposed to CO, its spectrum shifts to that of the ferrous CO derivative. Gasometric removal of CO leads to the oxidized species rather than to ferrous deoxy-HbI. At equilibrium, CO binds with an apparent affinity (p50) of about 10-25 mm of Hg and no cooperativity (20 degrees C, 10-50 mM buffers at pH 6.1). The kinetics of CO binding under pseudo-first order conditions are biphasic (t1/2 of 15-50 s at pH 6.1). The rates depend on protein, but not on CO concentration. The nitrite-oxidized protein is not reduced readily in the presence of CO unless one equivalent of ferrocyanide, but not of ferricyanide, is added. We infer that ferrocyanide, produced in the oxidation reaction, is tightly bound to the protein forming a redox couple with the heme iron. CO shifts the redox equilibrium by acting as a trap for the reduced heme. The equilibrium and kinetic aspects of the process have been accounted for in a reaction scheme where the internal electron transfer reaction is the rate-limiting step.  相似文献   

20.
Degradation of ferrous(II) cyanide complex (ferrocyanide) ions by free cells of P. fluorescens in the presence of glucose and dissolved oxygen was investigated as a function of initial pH, initial ferrocyanide and glucose concentrations and aeration rate in a batch fermenter. The microorganism used the ferrocyanide ions as the sole source of nitrogen. The ferrocyanide biodegradation rate was 30.7 mg g−1 h−1 under the conditions of initial pH: 5, stirring rate: 150 rpm, aeration rate: 0.15 vvm, initial ferrous(II) cyanide complex ion and glucose concentrations: 100 mg l−1 and 0.465 g l−1, respectively. The culture utilized glucose as the main substrate following the non-competitive toxic component inhibition model in the presence of 100 mg l−1 initial ferrous(II) cyanide complex ion concentration. The inhibition of ferrous(II) cyanide complex ions as a secondary substrate began at very low concentrations. A mathematical model, based on non-competitive substrate inhibition was used to describe the inhibitory effect of ferrous(II) cyanide complex ions on the growth of microorganism and the best fitted model parameters were determined by non-linear regression techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号