首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Controversy surrounds the assessments of carcinogenic potential associated with human exposure to trichloroethylene (TCE). The American Conference of Governmental Industrial Hygienists states that TCE is “not suspected to be a human carcinogen.” In contrast, the International Agency for Research on Cancer has classified TCE as a probable human carcinogen, based primarily on the results of animal toxicity studies. Chronic high-dose TCE exposures cause hepatic and pulmonary tumors in mice and renal tumors in rats. Human epidemiology studies, however, do not support a causal association between exposure to TCE at environmentally relevant levels and cancers of the lung, liver, or kidney. The apparent discrepancy between the animal data and the human data can be explained by (1) differences in TCE exposure levels between laboratory animals and humans, (2) species-specific differences in TCE metabolism, and (3) other species-specific mechanisms involved in the development of cancer in rodents. This paper critically assesses the experimental and epidemiological data relevant to the carcinogenic potential of TCE. From the analysis, we conclude that TCE exposure at concentrations likely to be encountered in most environmental media is not likely to cause liver, lung, or kidney cancers in humans.  相似文献   

2.
Historical concentrations of trichloroethylene (TCE) and other chemicals in drinking water at the U.S. Marine Corps Base at Camp Lejeune, NC, were sufficiently elevated to raise potential health concerns. The 1952–1984 mean TCE concentration (138 µg/L) exceeded the U.S. Environmental Protection Agency's (USEPA's) current maximum contaminant level (MCL) of TCE by 28-fold, with the corresponding dose (3.9E–03 mg/kg-day) exceeding all three candidate USEPA reference dose (RfD) values by 8- to 11-fold. Today, TCE hazard quotients (HQs) of 8–11 compel immediate action by USEPA. The mean dose also exceeds the supporting RfD values for toxic nephropathy and increased kidney weight, as well as the point of departure (POD) for toxic nephropathy. Furthermore, the estimated doses for 34% of the 9-month rolling averages exceed the POD for the highest RfD value for fetal heart defects. The incidences of nephropathy and fetal heart defects should be thoroughly evaluated among those who were exposed. Long-term follow-up will be required to assess potential health effects for the 500,000 to 1 million people who may have used the contaminated water at Camp Lejeune or were exposed in utero. This should serve as a cautionary tale for the thousands of Department of Defense sites across the USA (and other similarly contaminated sites elsewhere in the world) that are commonly contaminated with chemicals such as those at Camp Lejeune, where necessary sampling should be conducted to identify and mitigate any likely ongoing (or future) exposures of potential health concern.  相似文献   

3.
Concerning temporal trends in human reproductive health has prompted concern about the role of environmentally mediated risk factors. The population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products, subsequently multiple chemicals are found human populations around the globe. Recent reviews find that endocrine disrupting chemicals (EDCs) can adversely affect reproductive and developmental health. However, there are still many knowledge gaps. This paper reviews some of the key scientific concepts relevant to integrating information from human epidemiologic and model organisms to understand the relationship between EDC exposure and adverse human health effects. Additionally, areas of new insights which influence the interpretation of the science are briefly reviewed, including: enhanced understanding of toxicity pathways; importance of timing of exposure; contribution of multiple chemical exposures; and low dose effects. Two cases are presented, thyroid disrupting chemicals and anti-androgens chemicals, which illustrate how our knowledge of the relationship between EDCs and adverse human health effects is strengthened and data gaps reduced when we integrate findings from animal and human studies.  相似文献   

4.
5.
BACKGROUND: Assessing risks to human development from chemical exposure typically requires integrating findings from laboratory animal and human studies. METHODS: Using a case study approach, we present a program designed to assess the risk of the occurrence of malformations from inorganic arsenic exposure. We discuss how epidemiological data should be evaluated for quality and criteria for determining whether an association is causal. In this case study, adequate epidemiological data were not available for evaluating the potential effect of arsenic on development. Consequently, results from appropriately designed, conducted, and interpreted developmental toxicity studies, which have been shown to be predictive of human risk under numerous scenarios, were used. In our case study, the existing animal data were not designed appropriately to assess risk from environmental exposures, although such studies may be useful for hazard identification. Because the human and animal databases were deficient, a research program comprising modern guideline toxicological studies was designed and conducted. RESULTS: The results of those studies in rats, mice, and rabbits indicate that oral and inhalational exposures to inorganic arsenic do not cause structural malformations, and inhalational exposures produced no developmental effects at all. The new study results are discussed in conjunction with considerations of metabolism, toxicokinetics, and maternal toxicity. CONCLUSIONS: Based on the available experimental data, and absent contrary findings from adequately conducted epidemiological studies, we conclude that exposure to inorganic arsenic by environmentally relevant routes poses no risk of the occurrence of malformations and little risk of other prenatal developmental toxicity in developing humans without concomitant and near-lethal toxicological effects in mothers.  相似文献   

6.
Soy infant formula contains soy protein isolates and is fed to infants as a supplement to or replacement for human milk or cow milk. Soy protein isolates contains estrogenic isoflavones (phytoestrogens) that occur naturally in some legumes, especially soybeans. Phytoestrogens are nonsteroidal, estrogenic compounds. In plants, nearly all phytoestrogens are bound to sugar molecules and these phytoestrogen-sugar complexes are not generally considered hormonally active. Phytoestrogens are found in many food products in addition to soy infant formula, especially soy-based foods such as tofu, soy milk, and in some over-the-counter dietary supplements. Soy infant formula was selected for National Toxicology Program (NTP) evaluation because of (1) the availability of large number of developmental toxicity studies in laboratory animals exposed to the isoflavones found in soy infant formula (namely, genistein) or other soy products, as well as few studies on human infants fed soy infant formula, (2) the availability of information on exposures in infants fed soy infant formula, and (3) public concern for effects on infant or child development. On October 2, 2008 (73 FR 57360), the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) announced its intention to conduct an updated review of soy infant formula to complete a previous evaluation that was initiated in 2005. Both the current and previous evaluations relied on expert panels to assist the NTP in developing its conclusions on the potential developmental effects associated with the use of soy infant formula, presented in the NTP Brief on Soy Infant Formula. The initial expert panel met on March 15 to 17, 2006, to reach conclusions on the potential developmental and reproductive toxicities of soy infant formula and its predominant isoflavone constituent genistein. The expert panel reports were released for public comment on May 5, 2006 (71 FR 28368). On November 8, 2006 (71 FR 65537), CERHR staff released draft NTP Briefs on Genistein and Soy Formula that provided the NTP's interpretation of the potential for genistein and soy infant formula to cause adverse reproductive and/or developmental effects in exposed humans. However, CERHR did not complete these evaluations, finalize the briefs, or issue NTP Monographs on these substances based on this initial evaluation. Between 2006 and 2009, a substantial number of new publications related to human exposure or reproductive and/or developmental toxicity were published for these substances. Thus, CERHR determined that updated evaluations of genistein and soy infant formula were needed. However, the current evaluation focuses only on soy infant formula and the potential developmental toxicity of its major isoflavone components, e.g. genistein, daidzein (and estrogenic metabolite, equol), and glycitein. This updated evaluation does not include an assessment on the potential reproductive toxicity of genistein following exposures during adulthood as was carried out in the 2006 evaluation. CERHR narrowed the scope of the evaluation because the assessment of reproductive effects of genistein following exposure to adults was not considered relevant to the consideration of soy infant formula use in infants during the 2006 evaluation. To obtain updated information about soy infant formula for the CERHR evaluation, the PubMed (Medline) database was searched from February 2006 to August 2009 with genistein/genistin, daidzein/daidzin, glycitein/glycitin, equol, soy, and other relevant keywords. References were also identified from the bibliographies of published literature. The updated expert panel report represents the efforts of a 14-member panel of government and nongovernment scientists, and was prepared with assistance from NTP staff. The finalized report, released on January 15, 2010 (75 FR 2545), reflects consideration of public comments received on a draft report that was released on October 19, 2009, for public comment and discussions that occurred at a public meeting of the expert panel held December 16 to 18, 2009 (74 FR 53509). The finalized report presents conclusions on (1) the strength of scientific evidence that soy infant formula or its isoflavone constituents are developmental toxicants based on data from in vitro, animal, or human studies; (2) the extent of exposures in infants fed soy infant formula; (3) the assessment of the scientific evidence that adverse developmental health effects may be associated with such exposures; and (4) knowledge gaps that will help establish research and testing priorities to reduce uncertainties and increase confidence in future evaluations. The Expert Panel expressed minimal concern for adverse developmental effects in infants fed soy infant formula. This level of concern represents a "2" on the five-level scale of concern used by the NTP that ranges from negligible concern ("1") to serious concern ("5"). The Expert Panel Report on Soy Infant Formula was considered extensively by NTP staff in preparing the 2010 NTP Brief on Soy Infant Formula, which represents the NTP's opinion on the potential for exposure to soy infant formula to cause adverse developmental effects in humans. The NTP concurred with the expert panel that there is minimal concern for adverse effects on development in infants who consume soy infant formula. This conclusion was based on information about soy infant formula provided in the expert panel report, public comments received during the course of the expert panel evaluation, additional scientific information made available since the expert panel meeting, and peer reviewer critiques of the draft NTP Brief by the NTP Board of Scientific Counselors (BSC) on May 10, 2010 (Meeting materials are available at http://ntp.niehs.nih.gov/go/9741.). The BSC voted in favor of the minimal concern conclusion with 7 yes votes, 3 no votes, and 0 abstentions. One member thought that the conclusion should be negligible concern and two members thought that the level of concern should be higher than minimal concern. The NTP's response to the May 10, 2010 review ("peer-review report") is available on the NTP website at http://ntp.niehs.nih.gov/go/9741. The monograph includes the NTP Brief on Soy Infant Formula as well as the entire final Expert Panel Report on Soy Infant Formula. Public comments received as part of the NTP's evaluation of soy infant formula and other background materials are available at http://cerhr.niehs.nih.gov/evals/index.html.  相似文献   

7.
8.
The early-life environment, in particular maternal diet during pregnancy, influences a wide range of organs and systems in adult offspring. Mounting evidence suggests that developmental programming can also influence health and disease in grand-offspring. Transgenerational effects can be defined as those persisting into an F2 generation, where the F0 mother experiences suboptimal diet during her pregnancy. In this review, we critically examine evidence for transgenerational developmental programming effects in human populations, focusing on metabolic and reproductive outcomes. We discuss evidence from historical cohorts suggesting that grandchildren of women exposed to famine and other dietary alterations during pregnancy may experience increased rates of later health complications than their control counterparts. The methodological difficulties with transgenerational studies in human cohorts are explored. In particular, the problems with assessing reproductive outcomes in human populations are discussed. In light of the relative paucity of evidence available from human cohorts, we consider key insights from transgenerational experimental animal models of developmental programming by maternal diet; data are drawn from a range of rodent models, as well as the guinea-pig and the sheep. The evidence for different potential mechanisms of transgenerational inheritance or re-propagation of developmental programming effects is evaluated. Transgenerational effects could be transmitted through methylation of the gametes via the paternal and maternal lineage, as well as other possible mechanisms via the maternal lineage. Finally, future directions for exploring these underlying mechanisms further are proposed, including utilizing large, well-characterized, prospective pregnancy cohorts that include biobanks, which have been established in various populations during the last few decades.  相似文献   

9.
To detect mutagenic effects of trichloroethylene (TCE) on humans, sister-chromatid exchanges (SCEs) were analyzed in lymphocytes of 22 workers occupationally exposed to TCE and 22 matched controls. Although urinalysis in the workers revealed their obvious exposure to TCE, no increase in SCE frequencies was found in lymphocytes of the workers. SCE analysis in lymphocytes could not detect mutagenic effects by occupational exposure to TCE on humans.  相似文献   

10.
Trichloroethylene (TCE) and dichloroethylene (DCE) are high-volume industrial chemicals frequently found as contaminants in public drinking water supplies. The developmental toxicity of both chemicals has been evaluated in laboratory and epidemiologic studies. It has been suggested that TCE and DCE are specific cardiac teratogens and that drinking water contaminated with them increases the risk of congenital heart defects in exposed human populations. In contrast, other laboratory and epidemiologic studies do not find an increase in developmental effects, either in general or specifically affecting the heart. This laboratory and epidemiologic base was reviewed to evaluate the strengths and weaknesses of the conflicting published reports. We conclude that the weight of experimental and epidemiologic evidence does not support the hypothesis that TCE or DCE is a selective developmental toxicant in general or a cardiac teratogen specifically.  相似文献   

11.
The potential for trichloroethylene (TCE) and perchloroethylene (PERC) to induce developmental toxicity was investigated in Crl:CD (SD) rats whole-body exposed to target concentrations of 0, 50, 150 or 600 ppm TCE or 0, 75, 250 or 600 ppm PERC for six hours/day, seven days/week on gestation day (GD) 6-20 and 6-19, respectively. Actual chamber concentrations were essentially identical to target with the exception of the low PERC exposure level, which was 65 ppm. The highest exposure levels exceeded the limit concentration (2 mg/L) specified in the applicable test guidelines. Maternal necropsies were performed the day following the last exposure. Dams exposed to 600 ppm TCE exhibited maternal toxicity, as evidenced by decreased body weight gain (22% less than control) during GD 6-9. There were no maternal effects at 50 or 150 ppm TCE and no indications of developmental toxicity (including heart defects or other terata) at any exposure level tested. Therefore, the TCE NOEC for maternal toxicity was 150 ppm, whereas the embryo/fetal NOEC was 600 ppm. Maternal responses to PERC were limited to slight, but statistically significant reductions in body weight gain and feed consumption during the first 3 days of exposure to 600 ppm, resulting in a maternal NOEC of 250 ppm. Developmental effects at 600 ppm consisted of reduced gravid uterus, placental and fetal body weights, and decreased ossification of thoracic vertebral centra. Developmental effects at 250 ppm were of minimal toxicological significance, being limited to minor decreases in fetal and placental weight. There were no developmental effects at 65 ppm.  相似文献   

12.
The concept of the foetal/developmental origins of adult disease has been around for ~20 years and from the original epidemiological studies in human populations much more evidence has accumulated from the many studies in animal models. The majority of these have focused upon the role of early dietary intake before conception, through gestation and/or lactation and subsequent interactions with the postnatal environment, e.g. dietary and physical activity exposures. Whilst a number of theoretical models have been proposed to place the experimental data into a biological context, the underlying phenomena remain the same; developmental deficits (of single (micro) nutrients) during critical or sensitive periods of tissue growth alter the developmental pathway to ultimately constrain later functional capacity when the individual is adult. Ageing, without exception, exacerbates any programmed sequelae. Thus, adult phenotypes that have been relatively easy to characterise (e.g. blood pressure, insulin sensitivity, body fat mass) have received most attention in the literature. To date, relatively few studies have considered the effect of differential early environmental exposures on reproductive function and fecundity in predominantly mono-ovular species such as the sheep, cow and human. The available evidence suggests that prenatal insults, undernutrition for example, have little effect on lifetime reproductive capacity despite subtle effects on the hypothalamic-pituitary-gonadal axis and gonadal progenitor cell complement. The postnatal environment is clearly important, however, since neonatal/adolescent growth acceleration (itself not independent from prenatal experience) has been shown to significantly influence fecundity in farm animals. The present paper will expand these interesting areas of investigation and review the available evidence regarding developmental programming of reproduction and fertility. However, it appears there is little strong evidence to indicate that offspring fertility and reproductive senescence in the human and in farm animal species are overtly affected by prenatal nutrient exposure. Nevertheless, it is clear that the developing gonad is sensitive to its immediate environment but more detailed investigation is required to specifically test the long-term consequences of nutritional perturbations during pregnancy on adult reproductive well-being.  相似文献   

13.
Perfluoroalkyl acids (PFAAs) have attracted attention in recent years for their environmental ubiquity, as well as their toxicity. Several PFAAs are found in human tissues globally, as humans are exposed on a daily basis through intake of contaminated food, water, and air, irrespective of proximity to industry. Perfluorooctanoic acid (PFOA) is a PFAA shown to be developmentally toxic in mice, with broad and varied health consequences that may include long-lasting effects in reproductive tissues and metabolic reprogramming. To date, the only demonstrated mode of action by which the health effects of PFOA are mediated is via the activation of the peroxisome proliferator-activated receptor alpha (PPARα). The endogenous roles for this receptor, as well as the adverse outcomes of activation by exogenous agents during development, are currently under investigation. Recent studies suggest that PFOA may alter steroid hormone production or act indirectly, via ovarian effects, as a novel means of endocrine disruption. Here we review the existing literature on the known health effects of PFOA in animal models, focusing on sensitive developmental periods. To complement this, we also present epidemiologic health data, with the caveat that these studies largely address only associations between adult exposures and outcomes, rarely focusing on endocrine-specific endpoints, susceptible subpopulations, or windows of sensitivity. Further research in these areas is needed.  相似文献   

14.
Polychlorinated biphenyls (PCB''s) have low acute toxicity but are of public health concern because of their persistence in the environment, the bioaccumulation in human and animal tissues, and their potential for chronic or delayed toxicity.Although many questions remain unanswered, it is clear that occupational exposure, at a minimum, can produce dermatologic effects and liver dysfunction. The long half-life of PCB''s and their presence in various human tissues leaves open the possibility of substantial chronic and delayed effects analogous to those seen in animals. PCB''s are potent inhibitors of reproductive function in both rodents and nonhuman primates and produce liver tumors in animal cancer bioassays. As potent inducers of hepatic enzyme systems, PCB''s may have additional unpredictable long-term health effects.These effects have only recently begun to be studied in a rigorous manner, and although the epidemiological evidence is neither complete nor entirely consistent, there can be no question of the necessity to keep human exposures to the lowest feasible levels.  相似文献   

15.
目的:研究三氯乙烯(TCE)对斑马鱼胚胎心脏发育的毒性作用及其机制,为寻找干预靶点提供实验依据。方法:斑马鱼胚胎来自于国家斑马鱼资源中心,分为DMSO组(对照组)、DMSO+CHIR组、DMSO+XAV组、TCE处理组、TCE+CHIR组和TCE+XAV组(TCE设置为1、10、100 ppb三个不同的浓度;DMSO:二甲基亚砜;CHIR:CHIR-99021,Wnt信号通路激活剂;XAV:XAV-939,Wnt信号通路抑制剂),每组60条。斑马鱼胚胎饲养于系统养殖水中,恒温28℃,每隔24 h更换养殖水,并分别加入相应药物。连续培养72 h,收集斑马鱼胚胎的心脏组织,提取RNA进行转录组芯片分析,并以荧光定量PCR验证Wnt信号通路相关基因的表达。结果:与对照组相比,三氯乙烯暴露导致斑马鱼心脏畸形显著增加,以心房心室比例异常、环化不全以及心包水肿等为主要表型。芯片分析结果显示,TCE处理组Wnt信号通路相关基因(Axin2、Sox9b、Nkx2.5)表达受到显著影响。qPCR结果进一步验证,TCE处理组与DMSO对照组相比,Wnt通路靶基因Axin2、Sox9b及Nkx2.5的mRNA水平显著下调(P<0.05),提示Wnt信号通路被抑制。Wnt激活剂CHIR降低TCE导致的斑马鱼胚胎心脏发育异常,而添加Wnt通路抑制剂XAV后,斑马鱼胚胎心脏畸形率显著增加(P<0.05)。结论:三氯乙烯暴露导致斑马鱼胚胎心脏畸形,Wnt信号通路参与三氯乙烯的心脏发育毒性。  相似文献   

16.
In conducting health assessments at hazardous‐waste sites, ATSDR staff must identify environmental chemical contaminants that pose a potential public health hazard. To assist health assessors in this effort, ATSDR has developed environmental media evaluation guides (EMEGs). EMEGs have been developed for water, soil, and air. The EMEG values are expressed as a range to account for the range in exposures in different segments of the population. The use of EMEGs provides health assessors with a consistent strategy for selecting environmental contaminants to be further evaluated in the health assessment process.  相似文献   

17.
Due to its toxicity and persistence in the environment, trichloroethylene (TCE) has become a major soil and groundwater contaminant in many countries. A group of aliphatic- and aromatic-degrading bacteria expressing nonspecific oxygenases have been reported to transform TCE through aerobic cometabolism in the presence of primary substrate such as methane, ammonia, propane, phenol, toluene or cumene. This paper reviews the fundamentals and results of TCE cometabolism from laboratory and field studies. The limitations associated with TCE cometabolism including the causes and effects of substrate and/or inducer utilization rate and depletion, enzyme inhibition and inactivation, and cytotoxicity during TCE oxidation among various TCE-degrading bacteria and enzymes are discussed. In addition, the potential strategies e.g. addition of primary substrate/inducer or external energy substrate, use of a two-stage reactor and application of cell immobilization for sustained TCE degradation are highlighted. The review summarizes important information on TCE cometabolism, which is necessary for developing efficient TCE bioremediation approaches.  相似文献   

18.
Roy A  Bauer SM  Lawrence BP 《PloS one》2012,7(6):e38448
Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host's ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection.  相似文献   

19.
The practical implementation of the European Water Framework Directive has resulted in an increased focus on the hyporheic zone. In this paper, an integrated model was developed for evaluating the impact of point sources in groundwater on human health and surface water ecosystems. This was accomplished by coupling the system dynamics-based decision support system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical volatilization model for the stream. The model was applied to a case study where a trichloroethylene (TCE)-contaminated groundwater plume is discharging to a stream. The TCE source will not be depleted for many decades; however, measured and predicted TCE concentrations in surface water were found to be below human health risk management targets. Volatilization rapidly attenuates TCE concentrations in surface water. Thus, only a 30-m stream reach fails to meet surface water quality criteria. An ecological risk assessment found that the TCE contamination did not impact the stream ecosystem. Uncertainty assessment revealed hydraulic conductivity to be the most important site-specific parameter. These results indicate that contaminant plumes with μg L?1 concentrations of TCE entering surface water systems may not pose a significant risk.  相似文献   

20.
There has been growing concern about the possibility of adverse health effects resulting from exposure to radiofrequency radiations (RFR), such as those emitted by wireless communication devices. Since the introduction of mobile phones many studies have been conducted regarding alleged health effects but there is still some uncertainty and no definitive conclusions have been reached so far. Although thermal effects are well understood they are not of great concern as they are unlikely to result from the typical low-level RFR exposures. Concern rests essentially with the possibility that RFR-exposure may induce non-thermal and/or long-term health effects such as an increased cancer risk. Consequently, possible genetic effects have often been studied but with mixed results. In this paper we review the data on alleged RFR-induced genetic effects from in vitro and in vivo investigations as well as from human cytogenetic biomonitoring surveys. Attention is also paid to combined exposures of RFR with chemical or physical agents. Again, however, no entirely consistent picture emerges. Many of the positive studies may well be due to thermal exposures, but a few studies suggest that biological effects can be seen at low levels of exposure. Overall, however, the evidence for low-level genotoxic effects is very weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号