首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait.  相似文献   

2.
Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. Investigation of the contamination, distribution, and sources of PAHs in agricultural soils around Rong Xin coking plant, China, was conducted, and the potential human health risks were addressed. The total concentration of the 16 PAHs (∑16PAHs) on the United States Environmental Protection Agency priority list had a range from 1774 to 4621 µg/kg (mean 3016 µg/kg). Meanwhile, seven carcinogenic PAHs (∑PAH7c) owned the total concentrations of 684–2105 µg/kg, and they had the benzo[a]pyrene equivalent (BaPeq) concentrations at 139.616–1672.850 µg/kg. All soil samples were dominated by PAHs with two to four rings. Data analyses for the potential sources of PAHs showed that the PAHs in soils were principally from pyrogenic sources. Ecological risk assessment of soil PAHs showed that the BaPeq concentrations of ∑PAH7c accounted for 99% of the total ∑16PAHs, being a major carcinogenic contributors of ∑16PAHs. Higher levels of PAHs and higher total BaPeq concentrations in this study indicate a potential carcinogenic risk for humans. Therefore, long-term exposure to coking plants may increase the PAH concentrations in the environment and further raise a potential risk to human health.  相似文献   

3.
Sixteen USEPA priority polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography–mass spectrometry. Twenty samples were collected from the surface sediments of Haizhou Bay in this survey. This research aimed to identify the PAHs' contamination level, composition pattern, pollution sources, and assess the ecological risk of PAHs. The results showed that the sum of PAH concentrations ranged from 116.6 ng g?1 to 2414.9 ng g?1 (mean: 662.42 ng g?1), which is higher than the reported values for different wetlands worldwide. Three- and four-ring PAHs (accounts for more than 70% of the total PAH content) were predominant in the wetland sediment. The PAHs source distribution in the surface sediments were determined using diagnostic ratio and PCA/MLR. Consequently, multiple PAHs sources were found. Of the total PAH, 79.25% was derived from vehicular emission, 20.75% from coal combustion. The effect range low/effect range median (ERL/ERM) values indicated a low toxicity risk level. However, the fluoranthene concentrations exceeded the ERL level, and even the ERM level, in some stations. The mean effects range–median quotient (M-ERM-Q) suggests a low ecological risk for the PAHs in the sediments.  相似文献   

4.
In this research, ecological risks for eight individual polycyclic aromatic hydrocarbons (PAHs) and ∑PAH8 in surface sediments from middle and lower reaches of Yellow River are evaluated using overlapping areas of probability density curves and margin of safety (MOS), based on the toxicity data and the exposure concentrations of PAHs in sediments collected from 23 sites. In the overlapping areas of probability density curves, the risk of Ant and Pyr are the highest, then the risk level is in the order of Flua > Nap > Phe > BaP > Flu > Ace. The values of MOS10 present that Pyr (4.62 × 10?4), Ant (5.60 × 10?3), and Flua (6.4 × 10?3) have a significantly high ecological risk level, while Nap and Phe have middle-level ecological risk. As for Ace, BaP, and Flu, they pose limited risk to the ecological system with MOS10 greater than 1.0. The ∑PAH8 (2.66 × 10?5) is a higher risk level than that of any individual PAHs, where the probabilities of ∑PAH8 in excess of the 10th percentile of the toxicity data were 86%.  相似文献   

5.
Representative polycyclic aromatic hydrocarbons (PAHs) of low-medium molecular weight were determined using headspace solid-phase microextraction and gas chromatography with a flame ionization detector (HS-SPME-GC-FID) in ten surface soil samples from Gipuzkoa (Northern Spain). The sum of the PAHs ranged from 0.21 to 136.26 mg kg?1. Pyrene and chrysene were the most abundant detected PAHs with an average concentration around 3.1 mg kg?1. Pearson's correlation and PAH isomer ratios were applied to study the different origins of contamination. The results indicated that the PAH contamination in the studied area was a mixed pattern of pyrolytic and petrogenic inputs. Multivariate exploratory techniques, principal component analysis (PCA), and cluster analysis (CA) were also applied corroborating the PAH compounds patterns in the soils.  相似文献   

6.
A series of statistical and graphical techniques incorporating a “weight of evidence” approach were used to interpret results from an integrated Triad case study designed to determine potential environmental impacts to aquatic biota in the Delaware River that may be linked to PAHs found in Motiva's oil refinery effluent. Sediment concentrations of various metals, PCBs and LMW PAHs exceeding both ERL and ERM sediment quality guidelines (SQGs) were reported in the study area. However, most chemical contaminants did not exceed their respective SQGs. Results from a long-term sediment coring study indicated that there was no evidence of significant historical PAH contamination of sediments related to Motiva's exceedences. PAHs comprising the Motiva “fingerprint” were found in the surficial sediments at four near-field sites but non-Motiva PAH concentrations (background) were shown to be significantly higher at other far-field sites (non-Motiva influence). Chronic sediment toxicity appears to have significant relationships to the patterns of most PAH isomers, certain PCB isomers, and certain metals. However, sediment toxicity does not appear to be related to the PAH isomers that are characteristic of Motiva's effluent nor to the near-field sites. Impacted benthic communities were reported in the study area, primarily at one near-field and two far-field sites. However, there were no apparent relationships between benthic community health and sediment contaminants. The status of benthic communities does not appear to be related to PAHs derived from the Motiva effluent. The “weight of evidence” analysis developed from a systematic and comprehensive series of statistical and graphical assessments indicates that, although the study area displayed some degree of sediment contamination, chronic sediment toxicity, and benthic health impacts, these environmental effects generally could not be related to Motiva's exceedences.  相似文献   

7.
Soil and sediment samples from New Orleans have been collected and analyzed for contamination by 16 polycyclic aromatic hydrocarbons (PAHs) and 8 trace metals. Total PAH contents were found to vary from 40 μ g/kg to 40,000 μ g/kg, and concentrations of total metals varied in the range of 80 mg/kg and 7600 mg/kg. Source analysis of PAHs using diagnostic concentration ratios such as phenanthrene/anthracene and fluoranthene/ pyrene indicated that PAHs found at elevated concentrations in New Orleans soils and sediments were of pyrolytic origins. Spearman rank bivariate correlation analysis revealed significant correlations between soil PAHs and metals (r = 0.80, p < 0.0001) and between sediment PAHs and metals (r = 0.62, p < 0.05), suggesting common pollution sources for the two groups of environmental pollutants. Strong correlations were also found between Pb and Zn in soils (r = 0.93, p < 0.0001) as well as in sediments (r = 0.65, p < 0.05).  相似文献   

8.
Fu-Lin E. Chu 《Biomarkers》1999,4(6):537-548
This paper reviews and discusses our recent findings on the effects of contaminated sediments (CSs) and related water-soluble fractions (WSFs) on haemocyte function/activity and the onset and progression of an infectious disease caused by the protozoan parasite, Perkinsus marinus (Dermo) in the eastern oyster, Crassostrea virginica. Sediments used to generate WSFs and sediments used for the whole CS exposure experiments were collected in different areas of the southern branch of the Elizabeth River, a heavily polluted sub-estuary of the Chesapeake Bay, USA. The WSFs were dominated by low molecular weight polycyclic aromatic hydrocarbons (PAHs). The CSs used for whole CS exposure experiment had elevated concentrations of high molecular weight PAHs. Polychlorinated biphenyls (PCBs) and metals were also present in the CSs. No PCBs were detected in the WSFs. In vitro exposure of haemocytes to WSFs derived from CSs reduced to haemocytes' chemotaxic, phagocytic, and chemiluminescent responses to some extent. Exposure of oysters to suspended CSs stimulated neutral red uptake, mitochondrial dehydrogenase production and 3H-leucine incorporation in haemocytes. Exposure of oysters to 0, 15, 30% WSFs increased the oysters' susceptibility to laboratory-induced infection caused by P. marinus. Exposure of oysters to 15, and 30% dilutions of WSFs for 33 days or to 1.0, 1.5, and 2.0g CSs for 30 days significantly elevated the expression/progression of latent P. marinus infection in oysters in a dose-dependent manner.  相似文献   

9.
Fu-Lin E. Chu 《Biomarkers》2013,18(6):537-548
This paper reviews and discusses our recent findings on the effects of contaminated sediments (CSs) and related water-soluble fractions (WSFs) on haemocyte function/activity and the onset and progression of an infectious disease caused by the protozoan parasite, Perkinsus marinus (Dermo) in the eastern oyster, Crassostrea virginica. Sediments used to generate WSFs and sediments used for the whole CS exposure experiments were collected in different areas of the southern branch of the Elizabeth River, a heavily polluted sub-estuary of the Chesapeake Bay, USA. The WSFs were dominated by low molecular weight polycyclic aromatic hydrocarbons (PAHs). The CSs used for whole CS exposure experiment had elevated concentrations of high molecular weight PAHs. Polychlorinated biphenyls (PCBs) and metals were also present in the CSs. No PCBs were detected in the WSFs. In vitro exposure of haemocytes to WSFs derived from CSs reduced to haemocytes' chemotaxic, phagocytic, and chemiluminescent responses to some extent. Exposure of oysters to suspended CSs stimulated neutral red uptake, mitochondrial dehydrogenase production and 3H-leucine incorporation in haemocytes. Exposure of oysters to 0, 15, 30% WSFs increased the oysters' susceptibility to laboratory-induced infection caused by P. marinus. Exposure of oysters to 15, and 30% dilutions of WSFs for 33 days or to 1.0, 1.5, and 2.0g CSs for 30 days significantly elevated the expression/progression of latent P. marinus infection in oysters in a dose-dependent manner.  相似文献   

10.
Hormozgan Province plays a vital role in fishery, petroleum, and industrial activities in southern Iran. However, no comprehensive studies on organic pollution have been performed. PCBs and PAHs were analyzed in surface sediments from areas receiving industrial (nine sites), river (one site), and urban (two sites) effluents. The sediment samples were collected in March and September 2010 (in dry and wet seasons) at the highest tidal time. The overall pollution level of PCBs ranged from 2.5 ± 0.8 to 462.0 ± 206.7 ng/g dry weight. CB153 congener dominated in most of the sediment samples. Congener profiles of PCBs showed close similarity with formulations of commercial products such as Aroclor 1260 and 1254 g. A wide range of 55.3 to 1231.6 ng/g dry weight was detected for ∑PAHs. Results of PCA and PCA-MLR tests confirmed both petrogenic and pyrogenic origins for PAH pollution. The higher means of ∑PAHs and ∑PCBs in industrial and urban wastewaters were found near the shore, evidencing the role of these wastewaters in the PAH and PCB contamination in Hormozgan sediment. The concentrations of PAHs and PCBs in detected hotspots exceed the U.S. NOAA sediment quality guidelines.  相似文献   

11.
Taihu Lake is one of the largest freshwater lakes in China. The lake is very shallow with a mean depth of 1.9 m and an area of 2428 km2. This is the first time that polycyclic aromatic hydrocarbon concentrations in the surface sediments of Taihu Lake have been analyzed. A distinctive spatial distribution of PAHs was observed. Sediments from Lake Wulihu and Meiliang Bay (sites 1–5) had significantly higher PAH concentrations (858–5260 g kg–1 dw) than any other area of Taihu Lake. These high PAH levels were associated with the input of untreated and partially treated domestic and industrial sewage from Wuxi, Changzhou, Wujin and other cities. Special PAH ratios, such as phenanthrene/anthracene and fluoranthene/pyrene, were calculated to evaluate the relative importance of different origins. The data confirmed a relatively high level of petrogenic contamination in sites 1–5 (mainly sewage discharge and the river runoff). The other samples were further from the sources of pollution and have relatively low PAH concentrations (410–768 g kg–1 dw). The sources of PAHs in these sites (6–13) were characterized by combustion-derived PAH contamination associated with atmospheric deposition. In addition, effects range low (ERL) and effects range median (ERM) guidelines (Long et al., 1995) were used to estimate the potential of adverse effects resulting from PAH contamination in Taihu Lake sediments. The results indicated that some sites in the northern part of the lake had levels of PAH that exceeded the ERL value. This was interpreted to mean that acute biological effects may occasionally be expected to occur.  相似文献   

12.
Sediment samples collected over a 3-year period from Brisbane River, Australia, were analysed for fifteen (15) polycyclic aromatic hydrocarbons (PAHs). The total PAH concentrations varied from 148 to 3079 ng/g with a mean concentration of 849 ± 646 ng/g. The study revealed that PAH input into the river was primarily dominated by pyrogenic sources as evidenced by the predominance of the high molecular weight (HMW) PAHs. Temporal variations of PAHs can be linked to the level of urbanization, with continuous input of combustion related PAHs in the commercial area of the river. Inherent deficiencies in using a single source identification/apportionment approach were overcome by using diagnostic ratios, principal component analysis/absolute principal component scores (PCA/APCS) and positive matrix factorization (PMF). Both, PCA/APCS and PMF resolved four (4) identical factors or sources of PAHs, namely: gasoline emissions, diesel emissions, biomass burning and natural gas combustion. Diagnostic ratios, PCA/APCS and PMF analysis indicated that vehicular emissions were the principal sources especially within the lower section of the river while biomass burning had moderate contribution. The distribution, temporal trend and source apportionment suggest the containment of industrial-derived sources of PAHs in the river. From an ecological point of view, the risk posed by PAHs in the Brisbane River sediment appears to be low. Nevertheless, when the investigated sites were ranked using multi-criteria decision making methods(MCDM) the commercial stratum was the most contaminated. Assessment of potential risks posed by incidental dermal exposure to PAHs revealed some degree of cancer risk, especially to children.  相似文献   

13.
Summary A simplified avian kidney model was used to assess renal plasma flow (RPF) at normal (100–110 mmHg) or unilaterally reduced (40–50 mmHg) renal arterial perfusion pressure (RAPP) in domestic fowl with ambient (AMBIENT group) or restricted (RESTRICTED group) renal portal flow. Direct measurement of para-aminohippuric acid (PAH) extraction efficiencies (EPAH) allowed avian RPF to be calculated from the clearance of PAH (CPAH). EPAH was unaffected by RAPP, thereby validating the use of PAH to estimate RPF during experimental hemodynamic manipulations. CPAH and RPF were unaffected by RAPP in the AMBIENT group (perfect autoregulation), but decreased significantly compared with contralateral kidney values during reduction of RAPP in the RESTRICTED group. Urine flow and glomerular filtration rates (GFR) were reduced unilaterally along with RAPP, regardless of the portal perfusion status. The renal portal system contributes to overall RPF autoregulation in domestic fowl, helping to maintain constancy of renal blood flow even after RAPP is reduced well below the GFR autoregulatory limit.Abbreviations BW body weight - C In Clearance of inulin - C PAH clearance of PAH - E PAH PAH extraction efficiency - FF filtration fraction - GFR glomerular filtration rate - LiOH lithium hydroxide - MT mammalian-type nephron - PAH para-aminohippuric acid - [PAH] A concentration of PAH in arterial plasma - [PAH] a chromagen corrected PAH in arterial plasma - [PAH] E endogenous PAH-like chromagen - [PAH] UF concentration of ultrafilterable PAH - [PAH] v concentration of PAH in renal venous plasma - [PAH] v chromagen corrected PAH in renal venous plasma - RAPP renal arterial perfusion pressure - RPF renal plasma flow - RT reptilian-type nephron - UFR urine flow rate - UFR per gram urine flow rate per gram kidney weight - T M S PAH tubular secretory maximum for PAH - SEM standard error of mean  相似文献   

14.
The concentrations, distribution, possible sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in surface soils were studied in Kunming, which is situated in a lake basin of the Yunnan-Guizhou plateau. 15 PAHs were analyzed in 40 surface soil samples (0–5 cm layer) collected from six types of land uses in the Kunming urban area. Meanwhile, the potential sources of PAHs in surface soils of Kunming were investigated by PAH composition ratios, isomer ratios, and principal component analysis (PCA). The total concentrations of 15 PAHs ranged from 101.64 to 6,208.25 ng/g (dry weight basis). The concentrations in different land uses increased in an order as: green space (541.43 ng/g) < education area (756.49 ng/g) < business area (810.17 ng/g) < residential area (1,034.36 ng/g) < industrial area (1,166.79 ng/g) < roadside greens (2,146.76 ng/g). The results of sources identification suggested that PAHs in surface soils of the Kunming urban area were greatly affected by combustion activities which came mainly from coal combustion and vehicular traffic. In addition, the toxic equivalency factors (TEFs) were used to estimate benzo[a]pyrene-equivalent concentration in surface soils of Kunming, and the risk level of PAHs in Kunming's urban surface soils was low as a whole.  相似文献   

15.
Although reservoirs in China are of great significance, very few studies on risk assessment have been reported for reservoirs. This study investigated distribution characteristics, cancer and ecological risks, and source diagnosis of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediments from Shitou Koumen Reservoir in Jilin Province, China. A total of 12 sediment samples were collected from the reservoir in August (wet season) 2014. Total PAH concentrations in sediment samples ranged from 1294.51 ng/g to 2755.35 ng/g with a mean concentration of 1757.54 ng/g. For individual PAHs, average concentration of Nap was the highest, 800.56 ng/g, while Acy, Fla, BkF, and DahA were undetected in sediment samples. Light PAHs (2–3 rings) accounting for 74.21% was a dominant PAH compositional pattern. Pearson correlation analysis was carried out; results showed that total PAHs was strongly correlated with the highly enriched sedimentary PAHs, and pH was a major factor in controlling PAH distribution. Lifetime cancer risk was employed to assess cancer risk; results indicated that the fish-culturing area was exposed to cancer risk. The molecular diagnostic ratios of isomeric PAHs were applied to identify possible PAH sources; primary PAH sources were identified as oil-related activities, burning agricultural wastes, vehicular emissions, and industrial discharges.  相似文献   

16.
Marine harbor sediments are frequently polluted with significant amount of polycyclic aromatic hydrocarbons (PAHs) some of which are naturally toxic, recalcitrant, mutagenic, and carcinogenic. To stimulate biodegradation of PAHs in PAH-contaminated sediments collected from near Gwangyang Bay, Korea, lactate was chosen as a supplementary carbonaceous substrate. Sediment packed into 600 ml air-tight jar was either under no treatment condition or lactate amended condition (1%, w/v). Microbial community composition was monitored by bacteria-specific and archaea-specific PCR-terminal restriction fragment length polymorphism (T-RFLP), in addition to measuring the residual PAH concentration. Results showed that lactate amendment enhanced biodegradation rate of PAHs in the sediment by 4 to 8 times, and caused a significant shift in archaebacterial community in terms of structure and diversity with time. Phylogenetic analysis of 23 archaeal clones with distinctive RFLP patterns among 288 archaeal clones indicated that majority of the archaeal members were closest to unculturable environmental rDNA clones from hydrocarbon-contaminated and/or methanogenesis-bearing sediments. Lactate amendment led to the enrichment of some clones that were most closely related to PAH-degrading Methanosarcina species. These results suggest a possible contribution of methanogenic community to PAH degradation and give us more insights on how to effectively remediate PAH-contaminated sediments.  相似文献   

17.
长江口南支表层沉积物中多环芳烃分布特征及生态风险   总被引:4,自引:0,他引:4  
2008年5月和8月先后2次采集长江口南支表层沉积物样品,采用高效液相色谱进行多环芳烃测定,研究其分布、来源与生态风险。结果表明:长江口南支表层沉积物中PAHs总量在8.9~312.2ng.g-1;PAHs组成以芘、菲、苯并[b]荧蒽、苯并[a]蒽、苯并[a]芘为主,各站芘的含量均最高,本研究PAHs总含量与长江口、黄河口和鸭绿江口近期的调查数据相近,但明显低于珠江口和闽江口数据,以及长江口潮滩沉积物中PAHs数据;PAHs环数组成以中、高环为主,表明长江口南支PAHs主要来源于相对高温条件下不完全燃烧过程。采用平均效应中值商法评价长江口南支PAHs生态风险结果表明,调查区域PAHs产生生态风险的概率较小(<10%)。  相似文献   

18.
More than one thousand samples were collected and analyzed to evaluate the potential impact of Motiva's oil refinery effluent on the receiving water, sediment, and biota of the Delaware River. The data collected from these samples were used with advanced chemical fingerprinting of polycyclic aromatic hydrocarbons (PAHs) in Motiva's oil refinery effluent to differentiate Motiva-related PAHs in sediment and biota from other sources. The PAHs released from the refinery between 1999 and 2002 were dominated by petrogenic 4-ring PAHs. Specifically, the refinery signature exhibited relatively high levels of fluoranthenes/pyrenes with two (FP2) and three (FP3) alkyl groups and benz(a)anthracene/chrysenes with two (BC2), three (BC3), and four (BC4) alkyl groups. This PAH signature, attributed to accelerated degradation of low molecular weight PAHs in the Motiva wastewater treatment plant, exhibited little variability over time relative to the background patterns in the Delaware River. This distinctive feature of the Motiva effluent allowed the identification of this source in other samples. Water and sediment samples identified a range of PAH characteristics associated with the Delaware River urban background signature. These characteristics included varying levels of 2- to 3-ring PAHs (likely from weathered automotive fuel, marine fuel, or bilge tank discharges), pyrogenic 4- to 6-ring PAHs (from partially combusted organic material like soot), and perylene (diagenetic product of terrestrial plant decomposition). The Motiva hydrocarbon signature was only evident at moderate to low levels in selected near-field sampling stations for sediment, bivalves, and effluent/nearfield water. PAHs in the river sediments beyond the near-field area were consistently associated with samples containing the Delaware River urban background signature, and exhibited little to no effect from the Refinery.  相似文献   

19.
The behaviour of some organic micropollutants in the abiotic compartments water, particulate matter and bottom sediments of the Scheldt estuary, S.W. Netherlands, was studied between 1986 and 1989. Special attention was given to two individual PolyChlorinated Biphenyl congeners (PCB 52 and PCB 153), two Polycyclic Aromatic Hydrocarbons (PAHs) fluoranthene and benzo(a)pyrene and γ-HCH. Dissolved PCBs and γ-HCH behave conservatively during estuarine mixing. The concentration of γ-HCH in the fresh-water is extremely high in spring compared to the other seasons. Dissolved fluoranthene does not behave conservatively. The concentration of dissolved fluoranthene in the freshwater endmember shows a seasonal dependence with highest concentrations in winter and lowest in summer. Benzo(a)pyrene could hardly be detected in the dissolved phase with the methods used. PCBs and PAHs in particulate matter and sediments behave essentially conservatively as a result of the mixing of riverine particulates with high, and marine particulates with low organic micropollutant contents. Particulate fluoranthene is removed at low salinities under (nearly) anoxic conditions probably by microbial degradation. The rivers Scheldt and Rupel appear to be the major sources for the compounds studied. However, in particular the organic micropollutant contents of the sediments indicate that important emissions along the estuary were or are still present. Measurements of individual PCBs and PAHs in the <63 μm fraction of a dated sediment core from a salt marsh in the eastern part of the Scheldt estuary show that the recent input of PCBs and PAHs into the estuaryis probably 2–3 times lower than the maximum input in the mid-1960s. The PCB profile shows postdepositional congener-selective mobilization caused by advective transport. The PAH assemblage is remarkably uniform in the sediment core. The PAH ratios indicate that combustion of coal is the main source of PAHs in the Scheldt estuary.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) in the surface urban soils of Shenyang in Northeastern China were investigated. The total concentration of the PAHs ranged from 0.09 to 8.35 mg kg?1, with an average value of 1.51 ± 1.64 mg kg?1. 3–5-ring PAHs accounted for 90% of total PAHs. The functional areas, such as the industrial regions (4.95 mg kg?1) and main roads (1.56 mg kg?1), as well as the administrative divisions, including the districts of Shenhe (1.49 mg kg?1), Heping (2.08 mg kg?1), and Tiexi (2.14 mg kg?1), were heavily polluted by PAHs. The diagnostic ratios and principal component analysis (PCA) for PAHs indicate that the pollutants probably originated primarily from coal combustion and petroleum sources. The Nemerow composite index, used to assess environmental quality, shows that the soil samples were heavily polluted with PAHs, and although 52.8% of the soil sampling sites were safe, 47.2% of the soil sampling sites registered different grades of PAH pollution. The PAH contamination in Shenyang emphasizes the need for controlling fossil fuel combustion and traffic exhaust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号