首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
A mercury removal-recovery system was developed for collection of elemental mercury volatilized by biological mercuric ion reduction. Using the mercury removal-recovery system, removal of mercuric chloride from mercury-containing buffer without nutrients by resting cells of mercury-resistant bacterium, Pseudomonas putida PpY101/pSR134 was tested. Optimum temperature, pH, thiol compounds and cell concentration on removal of mercuric chloride were determined, and 92 to 98% of 40 mg Hg l–1 was recovered in 24 h. The efficiency of mercuric chloride removal from river water and seawater was as high as that observed when using a buffered solution.  相似文献   

2.
We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging to the IncP-1beta group. The abundance of merA and IncP-1 plasmid carrying populations increased, after new mercury exposure, which could be the result of selection as well as horizontal gene exchange. The data in this study suggest a role for IncP-1 plasmids in the acclimation to mercury of surface as well as subsurface soil microbial communities.  相似文献   

3.
Microbial communities in water from Baltimore Harbor and from the mainstem of Chesapeake Bay were examined for sensitivity to mercuric chloride, monomethyl mercury, stannic chloride, and tributyltin chloride. Acute toxicity was determined by measuring the effects of [3H]thymidine incorporation, [14C]glutamate incorporation and respiration, and viability as compared with those of controls. Minimum inhibitory concentrations were low for all metals (monomethyl mercury, less than 0.05 microgram liter-1; mercuric chloride, less than 1 microgram liter-1; tributyltin chloride, less than 5 micrograms liter-1) except stannic chloride (5 mg liter-1). In some cases, mercuric chloride and monomethyl mercury were equally toxic at comparable concentrations. The Chesapeake Bay community appeared to be slightly more sensitive to metal stress than the Baltimore Harbor community, but this was not true for all treatments or assays. For culturable bacteria the opposite result was found. Thymidine incorporation and glutamate metabolism were much more sensitive indicators of metal toxicity than was viability. To our knowledge, this is the first use of the thymidine incorporation method for ecotoxicology studies. We found it the easiest and fastest of the three methods; it is at least equal in sensitivity to metabolic measurements, and it likely measures the effects on greater portion of the natural community.  相似文献   

4.
The possibili that urinary glutamine transaminase K activity might be a marker of a proximal tubule segment-specific response to mercuric chloride was investigated in male rats after a single i.p. injection in time-course and dose-response experiments. Urinary total proteins and angiotensin converting enzyme activity were determined simultaneously. Urinary indices showed an early increase (within 5 h of treatment) of total proteins and angiotensin converting enzyme, whereas glubmine transaminase K increased 10 h after treatment. The peak of all these indices was observed 24 h after mercuric chloride injection. The lowest dose that induced a significant increase in proteins and enzymes was 0.25 mg kg-1; in addition, a dose-response effect was observed. Glutamine transaminase K appeared to be an early and sensitive index of response of mercuric chloride effects, similar to total proteins and angiotensin converting enzyme. It is suggested that this enzyme is mainly localized in the 'pars recta' of the proximal tubule. Therefore glutamine transaminase K might be a segment-specific marker for the detection of damage localized in this portion of the proximal tubule.  相似文献   

5.
Microbial communities in water from Baltimore Harbor and from the mainstem of Chesapeake Bay were examined for sensitivity to mercuric chloride, monomethyl mercury, stannic chloride, and tributyltin chloride. Acute toxicity was determined by measuring the effects of [3H]thymidine incorporation, [14C]glutamate incorporation and respiration, and viability as compared with those of controls. Minimum inhibitory concentrations were low for all metals (monomethyl mercury, less than 0.05 microgram liter-1; mercuric chloride, less than 1 microgram liter-1; tributyltin chloride, less than 5 micrograms liter-1) except stannic chloride (5 mg liter-1). In some cases, mercuric chloride and monomethyl mercury were equally toxic at comparable concentrations. The Chesapeake Bay community appeared to be slightly more sensitive to metal stress than the Baltimore Harbor community, but this was not true for all treatments or assays. For culturable bacteria the opposite result was found. Thymidine incorporation and glutamate metabolism were much more sensitive indicators of metal toxicity than was viability. To our knowledge, this is the first use of the thymidine incorporation method for ecotoxicology studies. We found it the easiest and fastest of the three methods; it is at least equal in sensitivity to metabolic measurements, and it likely measures the effects on greater portion of the natural community.  相似文献   

6.
Influences of biliary ligation and systemic depletion of glutathione (GSH) or modulation of GSH status on the disposition of a low, non-nephrotoxic i.v. dose of inorganic mercury were evaluated in rats in the present study. Renal and hepatic disposition, and the urinary and fecal excretion, of inorganic mercury were assessed 24 h after the injection of a 0.5-micromol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin (two 10-mg/kg i.p. doses in 2 ml/kg normal saline, 90 min apart, 60 min before mercuric chloride), buthionine sulfoximine (BSO; 2 mmol/kg i.v. in 4 ml/kg normal saline, 2 h before mercuric chloride) or diethylmaleate (DEM; 3.37 mmol/kg i.p. in 2 ml/kg corn oil, 2 h before mercuric chloride) that either underwent or did not undergo acute biliary ligation prior to the injection of mercury. Among the groups that did not undergo biliary ligation, the pretreatments used to alter GSH status systemically had varying effects on the disposition of inorganic mercury in the kidneys, liver, and blood. Biliary ligation caused the net renal accumulation of mercury to decrease under all pretreatment conditions. By contrast, biliary ligation caused significant increases in the hepatic burden of mercury in all pretreatment groups except in theacivicin-pretreated group. Blood levels of mercury also increased as a result of biliary ligation, regardless of the type of pretreatment used. The present findings indicate that biliary ligation combined with methods used to modulate GSH status systemically have additive effects with respect to causing reductions in the net renal accumulation of mercury. Additionally, the findings indicate that at least some fraction of the renal accumulation of inorganic mercury is linked mechanistically to the hepato-biliary system.  相似文献   

7.
This study is the first to examine the morphology of fish sperm using automated sperm morphology analysis (ASMA). The technique was applied to investigate the effect of an environmental pollutant, mercury, on the sperm morphology of goldfish Carassius auratus , and the effects on sperm morphology were compared with those on sperm motility. Goldfish sperm flagellar length was significantly shortened after instant exposure to 100 mg l−1 (368 µM) mercuric chloride, while curvilinear velocity (VCL) and the percentage of motile sperm were significantly decreased at mercuric chloride concentrations of 1 and 10 mg l−1 (3·68 and 36·8 µM), respectively. After 24 h exposure to 0·001 mg l−1 (0·0037 µM) mercuric chloride, flagellar length was significantly reduced in 38% of the spermatozoa. Following exposure to 0·1 mg l−1 (0·37 µM) mercuric chloride for 24 h, however, the majority of spermatozoa (98%), had significantly shortened flagella and increased sperm head length, width and area. Sperm motility was also significantly decreased at 0·1 mg l−1 (0·37 µM) mercuric chloride, probably due to the significantly reduced flagellar length at this concentration. This study shows that the morphological examination of fish sperm by ASMA provides, not only, an excellent tool for monitoring reproductive disruption caused by environmental pollution, but also has applications to other areas of fish reproductive biology, such as cryopreservation and aquaculture.  相似文献   

8.
Mercury compounds are among the most serious environmental pollutants. In this communication, the potentiating effects of organic and inorganic mercuries on clastogen-induced chromosome aberrations were studied in Chinese hamster CHO K1 cells. Post-treatment with monoalkylated mercuries — methyl mercuric chloride (MeHgCl) and ethyl mercuric chloride (EtHgCl) - increased the number of breakage-and exchange-type aberrations induced by 4-nitroquinoline 1-oxide (4NQO) and methyl methanesulfonate. With the DNA crosslinking agents mitomycin C (MMC) and cisplatin, MeHgCl enhanced both types of aberrations while EtHgCl enhanced breakage-type aberrations only. Since these monoalkylated mercuries did not show clastogenic effects by themselves under the present experimental conditions, the increases in chromosome aberrations were not additive. Dialkylated mercuries (dimethyl mercury and diethyl mercury) and inorganic mercuries (HgCl and HgCl2) did not show any potentiating effects.

When MMC- or 4NQO-treated cells were post-treated with MeHgCl during the G1 phase, both breakage- and exchange-type aberrations were enhanced. Treatment with EtHgCl during the G1 phase also enhanced both types of aberrations induced by 4NQO. With MMC, however, G1 treatment with EtHgCl did not show any potentiating effect. MeHgCl and EtHgCl treatments during the G2 phase enhanced breakage-type aberrations only.

Based on these results, the following possible mechanisms for potentiation of clastogenicity by monoalkylated mercuries were suggested; (1) they interfere with repair of base lesions induced by 4NQO and MMS during the pre-replicational stage, thereby increasing unrepaired DNA lesions which convert into DNA double-strand breaks in S phase, (2) MeHgCl (but not EtHgCl) also inhibits repair of crosslinking lesions during the pre-replicational stage, and (3) their G2 effects enhance breakage-type aberrations only.  相似文献   


9.
Intact and ghost erythrocytes and reticulocytes were incubated with 0.1 ppm 203-Hg as either mercuric chloride or methyl mercury chloride. Both mature and immature cells accumulated alkyl mercury more avidly than inorganic mercury. Methyl mercury chloride, but not mercuric chloride, readily penetrated the membrane and became incorporated into the intracellular compartment of intact cells. Although uptake of alkyl mercury was approximately the same for intact erythrocytes and reticulocytes, developing cells accumulated inorganic mercury more avidly than did mature cells. Increased uptake of inorganic mercury represented predominantly an increase in stromal binding, illustrating differences in the surface membrane or reticulocytes and erythrocytes.  相似文献   

10.
This study was undertaken in order to assess the effects of metabolism and complexations with amino acids on the renal uptake of mercury using rat renal cortex slices as the experimental system. Mercury levels attained in the slices after 60 min of incubation were 50% higher with mercuric cysteine than with mercuric chloride. This enhancement of uptake with mercuric cysteine was reduced in the presence of a tenfold molar excess of histidine or lysine, but not by serine. Excess cysteine markedly increased mercury uptake. Incubation at 25 degrees significantly reduced uptake of mercuric cysteine, but not mercuric chloride. Anaerobic conditions and incubation in the presence of DNP each reduced mercuric cysteine uptake to the control level of mercuric chloride without affecting uptake of mercuric chloride. The differential aspects of metabolism on the uptake of mercuric cysteine and mercuric chloride and the competitive effects obtained with amino acids known to compete with cysteine in renal reabsorption support the hypothesis that a portion of the renal uptake of mercury operates through amino acid transport mechanisms acting on mercury-amino acid complexes.  相似文献   

11.
Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.  相似文献   

12.
Acute effects of mercury on mouse blood, kidneys, and liver were evaluated. Mice received a single dose of mercuric chloride (HgCl2, 4.6 mg/kg, subcutaneously) for three consecutive days. We investigated the possible beneficial effects of antioxidant therapy (N-acetylcysteine (NAC) and diphenyl diselenide (PhSe)2) compared with the sodium salt of 2,3-dimercapto-1-propanesulfonic acid (DMPS), an effective chelating agent in HgCl2 exposure in mice. We also verified whether metallothionein (MT) induction might be involved in a possible mechanism of protection against HgCl2 poisoning and whether different treatments would modify MT levels and other toxicological parameters. The results demonstrated that HgCl2 exposure significantly inhibited δ-aminolevulinate dehydratase (δ-ALA-D) activity in liver and only DMPS treatment prevented the inhibitory effect. Mercuric chloride caused an increase in renal non-protein thiol groups (NPSH) and none of the treatments modified renal NPSH levels. Urea concentration was increased after HgCl2 exposure. NAC plus (PhSe)2 was partially effective in protecting against the effects of mercury. DMPS and (PhSe)2 were effective in restoring the increment in urea concentration caused by mercury. Thiobarbituric acid-reactive substances (TBARS), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and ascorbic acid levels were not modified after mercury exposure. Mercuric chloride poisoning caused an increase in hepatic and renal MT levels and antioxidant treatments did not modify this parameter. Our data indicated a lack of therapeutic effect of the antioxidants tested.  相似文献   

13.
Sodium selenite was administered to rats before, after, and simultaneously with mercuric chloride. In all animal groups, mercury was administered intravenously in doses of 0.5 mg/kg every other day for two weeks. Selenium was given intragastrically either in a single dose of 7.0 mg Se/kg or in repeated doses of 0.1 mg Se/kg every day for weeks. It was demonstrated that, depending on the administration schedule, selenium induced significant changes in the binding of mercury by soluble fraction proteins both in the kidneys and in the liver. In every exposure, the mercury content decreased mainly in the low-molecular weight proteins, and the level of metallothionein-like proteins was diminished in the both organs. In the kidneys, the mercury content showed a correlation with the level of metallothionein (r=0.78). Amounts of mercury below 10 μg/g kidney do not stimulate metallothionein biosynthesis in this organ. A distinct interaction effect was observed in the case of a simultaneous administration of equimolar amounts of both the metals in question.  相似文献   

14.
Abstract A susceptibility of 63 clinical isolates of Klebsiella pneumoniae to inorganic and organic mercuric compounds was determined. 18 of them were found to be resistant to fluorescein mercuric acetate (FMA) and merbromin (MB). Moreover, all the resistant strains inactivate the antibacterial effect of FMA. The changes in the amount of organic mercury at the time of inactivation of the drug and the structures of the end products were examined in detail with the plasmid-bearing strain JK9 and its transconjugants of Escherichia coli .
The results showed that FMA was inactivated by an intracellular enzyme produced inducively and was degraded to fluorescein (sodium salt, uranine), which led to the sedimentation of metallic mercury. The discovery of the genes conferring inducible organic mercury-inactivating enzymes determined by plasmids was the next step and their application in the recovery of metallic mercury from organomercurials is now imminent.  相似文献   

15.
Summary Interactions of the cationic dye methylene blue with mercuric chloride have been studied conductometrically, analytically and spectrophotometrically. Methylene blue produces red colored precipitate with mercuric chloride; in presence of large excess of mercuric chloride a strong metachromasia is induced in the dye. Metachromasia induced by mercuric chloride is more hypsochromic as well as hypochromic than that induced by chromotopes like heparin. The complexes formed between methylene blue and mercuric chloride have variable compositions, the complex responsible for the red metachromatic color of the dye has the composition 2 dye: 1 HgCl2. A model has been proposed for the metachromatic complex consisting hexa-coordinated mercury, dye is coordinated to the mercury by donating the lone pair electrons of terminal nitrogen. The non-metachromatic dye capri blue also interacts with mercuric chloride but without any change in the visible spectrum. Potassium iodide also gives metachromatic reddish blue colored precipitate with methylene blue.University Research Scholar.  相似文献   

16.
Losses from hard rot, measured by an arbitrary disease index, were reduced by treating the dehusked corms before planting with mercuric chloride (with or without the addition of 10% hydrochloric acid), mercurous chloride (calomel), three proprietary mercury compounds (Aretan, Uspulun and Ceresan) and one proprietary non-mercury compound (Folosan). Calomel was the least effective. All the treatments were relatively less effective when corms with definite lesions were treated.
The weight of clean corms produced per old corm planted (weight index) was usually increased by all the fungicides tried, but calomel and Ceresan were less satisfactory than the others.
Mercuric chloride (3 hr. steep in a 0.1% solution) was not rendered more effective by the addition of hydrochloric acid nor by a preliminary dip in methylated spirits to facilitate wetting, while the addition of a proprietary wetting compound (Agral) was definitely harmful to the corms and usually less effective than mercuric chloride alone. Increase in time of steeping or concentration of mercuric chloride was not beneficial and was sometimes harmful. Reduction in time of steeping to 1 hr. gave promising results.
Treatment in November had some advantages over treatment in March.
All the mercury compounds tended to delay flowering, this being most marked in the presence of the wetting compound. Stunted foliage and poor quality flowers resulted from the use of Ceresan.  相似文献   

17.
The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress.  相似文献   

18.
Following i.p. mercuric chloride injections, the mercury was deposited primarily in the kidneys. Simultaneous selenium injections prevented mercury induced osmoregulatory failure even though selenium strongly promoted the movement of mercury to the kidneys and its deposition in an approximate 1:1 mercuric selenite ratio. Whole-body retention of mercury was not altered by simultaneous subcutaneous injections of sodium selenite.  相似文献   

19.
The nephropathy induced by mercuric chloride was assessed in unilaterally nephrectomized (NPX) and sham-operated (SO) rats using histological and urinalysis techniques. This assessment was carried out in order to test whether or not rats are more susceptible to the nephrotoxic effects of mercuric chloride after unilateral nephrectomy and a period allowing for compensatory renal growth. Twelve days after surgery both NPX and SO rats were given a single 1.5, 2.0 or 2.5 mumol/kg dose of mercuric chloride (i.v.). Twenty-four hours after the 1.5 or 2.0 mumol/kg dose of mercuric chloride was administered, cellular and tubular necrosis in the pars recta segments of proximal tubules in the outer medulla was more severe in NPX rats than in SO rats. Moreover, the urinary excretion of a number of cellular enzymes (e.g. lactate dehydrogenase) and plasma solutes (e.g. albumin) was greater in NPX rats than in SO rats. At the 2.5 mumol/kg dose of mercuric chloride, renal tubular damage was quite extensive in both groups of rats; to such an extent that possible differences in renal tubular damage between the NPX and SO rats could not be determined histologically. However, the urinary excretion of alanine aminopeptidase was greater in the NPX rats than in the SO rats. Therefore, based on the aforementioned findings, rats that have undergone and adapted to a reduction in renal mass (i.e. unilateral nephrectomy) appear to be more vulnerable to the nephrotoxic effects of mercuric chloride than rats with two normal kidneys.  相似文献   

20.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver, especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p>0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung, and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9–48 h after sc injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24, or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号