首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pH affected significantly the growth and the glucose fermentation pattern of Propionibacterium microaerophilum. In neutral conditions (pH 6.5-7.5), growth and glucose fermentation rate (qs) were optimum producing propionate, acetate, CO(2), and formate [which together represented 90% (wt/wt) of the end products], and lactate representing only 10% (wt/wt) of the end products. In acidic conditions, propionate, acetate, and CO(2) represented nearly 100% (wt/wt) of the fermentation end products, whereas in alkaline conditions, a shift of glucose catabolism toward formate and lactate was observed, lactate representing 50% (wt/wt) of the fermentation end products. The energy cellular yields ( Y(X/ATP)), calculated (i) by taking into account extra ATP synthesized through the reduction of fumarate into succinate, was 6.1-7.2 g mol(-1). When this extra ATP was omitted, it was 11.9-13.1 g mol(-1). The comparison of these values with those of Y(X/ATP) in P. acidipropionici and other anaerobic bacteria suggested that P. microaerophilum could not synthesize ATP through the reduction of fumarate into succinate and therefore differed metabolically from P. acidipropionici.  相似文献   

2.
Clostridium thermobutyricum produces butyrate as the main fermentation product from glucose, and from yeast extract, which is required for substantial growth. After sequential transfer in the presence of increasing butyrate concentrations, strain JW 171 K grew in the presence of up to 350 mM butyrate either at pH 5.5 or at pH 8.0 and at 40 degrees C as well as at 60 degrees C. This result indicated that butyrate-dependent growth inhibition was independent from the concentration of undissociated butyric acid. Increased butyrate concentration decreased the level of tolerated glucose from above 15% to below 10%. At 0.05 and 2.0% (wt/vol) yeast extract, the Y(Glucose) was 30 and 55 g dry weight cells per mole glucose, respectively. Y(ATP) values between 18 and 21 g weight cells per mole ATP, obtained after growth in the presence of 2% yeast extract, indicate that the butyrate fermentation under thermophilic growth conditions is as energy efficient as it is under mesophilic conditions. Externally added acetate stimulated the production of butyrate. Supplemented 14C-acetate was converted to butyrate, resulting in the formation of 44% labeled butyrate (i.e. formed from 14C-acetate) and 56% unlabeled butyrate (formed from glucose and yeast extract). Continuous removal of H2 in batch cultures led to a shift in the fermentation products from more butyrate to the more oxidized and more energy yielding acetate.  相似文献   

3.
Fusobacterium nucleatum ATCC 10953 was grown in continuous culture and the atmosphere changed stepwise from nitrogen (anaerobiosis) to a mixture of air: oxygen (40:60). No significant differences in biomass were observed and the baseline low level of superoxide dismutase increased only slightly; catalase and peroxidase activities were never detected but the level of NADH oxidase increased more than three-fold when oxygen was introduced into the system. In relation to acidic end-products, the relative proportion of acetate increased while that of butyrate decreased. Due mainly, it would seem, to NADH oxidase activity, the culture maintained a low redox potential (E(h)=-274 mV) even under an atmosphere of 40% oxygen in air and dissolved oxygen was not detected. This may, in part, explain the protective role of F. nucleatum for anaerobes in both biofilm and planktonic phases of aerated, mixed cultures of oral bacteria.  相似文献   

4.
Metabolic footprinting of the anaerobic bacterium Fusobacterium varium demonstrated the accumulation of six carboxylic acids as metabolic end-products and revealed specific growth requirements and utilization capabilities towards amino acids. Guided by (1)H NMR determinations of residual amino acids in spent medium, a modified chemically defined minimal medium (CDMM*) was developed by minimizing the amino acid composition while satisfying nutritional requirements to support abundant growth of F. varium. Quantitative determinations of carboxylate salts and residual substrates were readily performed by (1)H NMR analysis of lyophilized residues from CDMM* cultures without interference from initial medium components. Only small concentrations of alanine, arginine, glycine, isoleucine, leucine, methionine, proline and valine were required to support growth of F. varium, whereas larger quantities of aspartate, asparagine, cysteine, glutamine, glutamate, histidine, lysine, serine and threonine were utilized, most likely as energy sources. Both bacterial growth and the distribution of carboxylate end-products depended on the composition of the chemically defined medium. In cultures provided with glucose as the primary energy source, the accumulation of butyrate and lactate correlated with growth, consistent with the regeneration of reduced coenzyme formed by the oxidative steps of glucose catabolism.  相似文献   

5.
A strictly anaerobic, homoacetogenic, gram-positive, non spore-forming bacterium, designated strain SR12(T) (T = type strain), was isolated from an anaerobic methanogenic digestor fed with olive mill wastewater. Yeast extract was required for growth but could also be used as sole carbon and energy source. Strain SR12(T) utilized a few carbohydrates (glucose, fructose and sucrose), organic compounds (lactate, crotonate, formate and betaine), alcohols (methanol), the methoxyl group of some methoxylated aromatic compounds, and H2 + CO2. The end-products of carbohydrate fermentation were acetate, formate, butyrate, H2 and CO2. End-products from lactate and methoxylated aromatic compounds were acetate and butyrate. Strain SR12(T) was non-motile, formed aggregates, had a G+C content of 55 mol % and grew optimally at 35 degrees C and pH 7.2 on a medium containing glucose. Phylogenetically, strain SR12(T) was related to Eubacterium barkeri, E. callanderi, and E. limosum with E. barkeri as the closest relative (similarity of 98%) with which it bears little phenotypic similarity or DNA homology (60%). On the basis of its phenotypic, genotypic, and phylogenetic characteristics, we propose to designate strain SR12(T) as Eubacterium aggregans sp. nov. The type strain is SR12(T) (= DSM 12183).  相似文献   

6.
The inhibitory effects of organic acids produced as fermentation end-products during methylotrophic growth of the acidogenic anaerobe, Eubacterium limosum have been investigated. Precise quantification of the intracellular concentrations of acetate and butyrate, together with delta pH measurements indicate that butyrate efflux cannot be explained by a process of passive diffusion. Intracellular concentrations of butyrate were significantly lower than those of the culture broth. It is argued that growth inhibition by butyrate is due to energetic limitations resulting from the energy drain associated with this non-passive efflux mechanism.  相似文献   

7.
A mixed methanogenic culture fed with glucose was perturbed with butyrate and formate to investigate the role of formate in the acetogenesis of butyrate. A free energy analysis suggests that formate rather than H2 was the interspecies electron carrier for butyrate conversion into acetate for the culture studied.  相似文献   

8.
Smith EA  Macfarlane GT 《Anaerobe》1997,3(5):327-337
The abilities of slurries of human faecal bacteria to ferment 20 different amino acids were investigated in batch culture incubations. Ammonia, short chain fatty acids, and in some cases, amines, were the principal products of dissimilatory metabolism. The types of SCFA produced were dependent on the chemical compositions of the test substrates. Thus, acetate and butyrate were formed from the acidic amino acid glutamate, while acetate and propionate predominated in aspartate fermentations. Breakdown of the basic amino acids lysine and arginine was rapid, and yielded butyrate and acetate, and ornithine and citrulline, respectively. The major products of histidine deamination were also acetate and butyrate. However, fermentation of sulphur-containing amino acids was slow and incomplete. Acetate, propionate and butyrate were formed from cysteine, whereas the main products of methionine metabolism were propionate and butyrate. The simple aliphatic amino acids alanine and glycine were fermented to acetate, propionate and butyrate, and acetate and methylamine, respectively. Branched-chain amino acids were slowly fermented by colonic bacteria, with the main acidic products being branched-chain fatty acids one carbon atom shorter than the parent amino acid. Low concentrations of amines were also detected in these fermentations. Aliphatic-hydroxy amino acids were rapidly deaminated by large intestinal microorganisms. Serine was primarily fermented to acetate and butyrate, while threonine was mainly metabolised to propionate. Proline was poorly utilized by intestinal bacteria, but hydroxyproline was efficiently fermented to acetate and propionate. The aromatic amino acids tyrosine, phenylalanine and tryptophan were broken down to a range of phenolic and indolic compounds.  相似文献   

9.
pH affected significantly the growth and the glucose fermentation pattern of Propionibacterium microaerophilum. In neutral conditions (pH 6.5–7.5), growth and glucose fermentation rate (qs) were optimum producing propionate, acetate, CO2, and formate [which together represented 90% (wt/wt) of the end products], and lactate representing only 10% (wt/wt) of the end products. In acidic conditions, propionate, acetate, and CO2 represented nearly 100% (wt/wt) of the fermentation end products, whereas in alkaline conditions, a shift of glucose catabolism toward formate and lactate was observed, lactate representing 50% (wt/wt) of the fermentation end products. The energy cellular yields (Y X/ATP), calculated (i) by taking into account extra ATP synthesized through the reduction of fumarate into succinate, was 6.1–7.2 g mol−1. When this extra ATP was omitted, it was 11.9–13.1 g mol−1. The comparison of these values with those of Y X/ATP in P. acidipropionici and other anaerobic bacteria suggested that P. microaerophilum could not synthesize ATP through the reduction of fumarate into succinate and therefore differed metabolically from P. acidipropionici. Received: 8 April 2002 / Accepted: 8 May 2002  相似文献   

10.
Compared with cultures grown aerobically in batch culture with glucose, aerated cultures of lactic streptococci had a less homolactic type of metabolism when galactose was the carbohydrate source in batch cultures, or when glucose was limiting in chemostat cultures. Differences in end-products of sugar metabolism between aerated and unaerated cultures were observed. In addition to lactate, formate, acetate and ethanol were produced in anaerobic cultures, whereas acetate and acetoin were formed in aerated cultures. Acetate production in aerated cultures depended on lipoic acid, an essential cofactor of the pyruvate dehydrogenase complex. In a chemically defined medium with glucose as the energy substrate, lipoic acid (or acetate) was an essential growth factor. Formation of acetoin was inversely related to lipoic acid concentration in the growth medium. Although not observed in unaerated cultures, acetoin (and 2,3-butanediol) was produced in unaerated buffered suspensions metabolizing pyruvate. Aeration caused a modest increase in the activities of aP-acetolactate synthetase and phosphate acetyl trans-ferase, but it is unlikely that the increases were sufficient to account for the changes in end-products of sugar metabolism observed.  相似文献   

11.
A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H(2). This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments.  相似文献   

12.
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.  相似文献   

13.
Clostridium pasteurianum fermented glucose to acetate, butyrate, CO2 and H2. In batch cultures the fermentation pattern was only slightly affected by culture pH over the range 8·0 to 5·5. The acetate/butyrate ratio was always higher than or equal to one. Between 2·14 and 2·33 mol H2 was produced per mol glucose fermented. At unregulated pH, more butanol and less butyrate was formed. In a carbon-limited chemostat, the steady-state acetate/butyrate ratio was always lower than one. H2 production was approximately 1·70 mol per mol glucose consumed. Substantial amounts of extracellular protein were formed. With decreasing pH, acetate and formate production decreased, while H2 production was highest at pH 6.0. With increasing dilution rate ( D ), the product spectrum hardly changed, but more biomass was formed. Y glucosemax and Y ATPmax were 55·97 and 31·48 g dry weight per mol glucose or ATP respectively. With increasing glucose input the formation of fatty acids and H2 slightly decreased.
Continuous cultures fermented mannitol to acetate, butyrate, butanol, CO2 and H2. With acetate as co-substrate, butanol production and molar growth yields, Y mannitol and Y ATP, markedly decreased, while the butyrate and H2 production increased. The latter reached a value of 2·21 mol H2 per mol mannitol consumed.  相似文献   

14.
Two types of mesophilic methanogenic granules (R- and F-granules) were developed on different synthetic feeds containing acetate, propionate and butyrate as major carbon sources and their metabolic properties were characterized. The metabolic activities of granules on acetate, formate and H2-CO2 were related to the feed composition used for their development. These granules performed a reversible reaction between H2 production from formate and formate synthesis from H2 plus bicarbonate. Both types of granules exhibited high activity on normal and branched volatile fatty acids with three to five carbons and low activity on ethanol and glucose. The granules performed a reversible isomerization between isobutyrate and butyrate during butyrate or isobutyrate degradation. Valerate and 2-methylbutyrate were produced and consumed during propionate-butyrate degradation. The respective apparent K m (mm) for various substrates in disrupted R- and F-granules was: acetate, 0.43 and 0.41; propionate, 0.056 and 0.038; butyrate, 0.15 and 0.19; isobutyrate, 0.12 and 0.19; valerate, 0.15 and 0.098. Both granules had an optimum temperature range from 40 to 50° C for H2-CO2 and formate utilization and 40° C for acetate, propionate and butyrate utilization and a similar optimum pH. Correspondence to: J. G. Zeikus  相似文献   

15.
Summary Production of butyrate has been studied in continuous cultures of Clostridium tyrobutyricum. Production of acids, gases and cell biomass were determined under conditions of glucose limitation by varying either the glucose input or the dilution rate. Addition of acetate or butyrate to the cultures was also tested. The results led to the proposition that inhibition by acids acting as incouplers of energy production could provide a physiological explanation for most of the phenomena observed. It readily accounted for the higher productivities but lower product concentrations obtained in continuous culture with respect to batch or fed-batch conditions. It also explained the decrease in the ratios of butyrate to total acids and in cell yield observed at higher glucose input as well as the behaviour of the cultures under conditions of excess glucose. It could also possibly account for the partial conversion of added acetate to butyrate observed at moderate growth rates. Offprint requests to: J. P. Vandecasteele  相似文献   

16.
A strictly anaerobic, homoacetogenic, Gram-positive, non spore-forming bacterium, designated strain SR12T(T=type strain), was isolated from an anaerobic methanogenic digestor fed with olive mill wastewater. Yeast extract was required for growth but could also be used as sole carbon and energy source. Strain SR12Tutilized a few carbohydrates (glucose, fructose and sucrose), organic compounds (lactate, crotonate, formate and betaine), alcohols (methanol), the methoxyl group of some methoxylated aromatic compounds, and H2+CO2. The end-products of carbohydrate fermentation were acetate, formate, butyrate, H2and CO2. End-products from lactate and methoxylated aromatic compounds were acetate and butyrate. Strain SR12Twas non-motile, formed aggregates, had a G+C content of 55 mol % and grew optimally at 35°C and pH 7.2 on a medium containing glucose. Phylogenetically, strain SR12Twas related toEubacterium barkeri, E. callanderi, andE. limosumwithE. barkerias the closest relative (similarity of 98%) with which it bears little phenotypic similarity or DNA homology (60%). On the basis of its phenotypic, genotypic, and phylogenetic characteristics, we propose to designate strain SR12TasEubacterium aggreganssp. nov. The type strain is SR12T(=DSM 12183).  相似文献   

17.
Summary The parameters that control fermentation performance of butyrate production have been studied with a selected strain ofClostridium tyrobutyricum. Fed-batch supply of glucose increased productivity for butyrate. The ratio of butyrate to total acids was strongly influenced by the growth rate of the bacteria, acetate being produced along with butyrate at higher growth rates. In glucose-limited, fed-batch cultures, initially produced acetate was re-utilized, resulting in exclusive production of butyrate. In cultures with non-limiting glucose feeding, the butyrate concentration reached 42.5 g·1–1 with a selectivity of 0.90, a productivity of 0.82 g·–1 per hour and a yield of 0.36 g·g–1 The effects of the mode of supply of glucose on the production of butyrate and acetate are discussed in relation with the energy requirements for cell growth.  相似文献   

18.
The amount of Na2CO3 added to semi-synthetic medium determined the length of the lag phase, the growth rate and the dry weight of three strains of Butyrivibrio fibrisolvens (WV1, NOR37, B835). With increasing CO3(2-) concentration the molar growth yield of bacteria, from glucosewas increased and, of the fermentation products, formate increased more than the other acids. CO3(2-)-limited cultures of strain WV1 (Group 2 Butyrivibrio) and strain NOR37 (Troup 1 Butyrivibrio) incorporated 14CO3(2-) into lactate and formate. In NOR37, lactate and formate had equal specific activities; in WV1, the formate specific activity was twice that of lactate. Strain WV1 had an active pyruvate synthase and an energy-dependent exchange between CO3(2-) and formate was demonstrated. In strain WV1 butyrate was produced mainly from glucose.  相似文献   

19.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

20.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号