首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1995,131(6):1387-1401
The transfer of newly synthesized membrane proteins moving from the rough endoplasmic reticulum (RER) to the Golgi complex has been studied by electron microscopy in HEp-2 cells transfected with cDNAs for chimeric proteins. These proteins consist of a reporter enzyme, horseradish peroxidase (HRP), anchored to the transmembrane domains of two integral membrane proteins, the transferrin receptor and sialyl- transferase. The chimeras are distributed throughout the nuclear envelope, RER, vesicular tubular clusters (VTCs) and a network of tubules in the cis-Golgi area. At 20 degrees C tubules containing chimera connect the RER to the VTCs and to the cis-Golgi network. On transfer to 37 degrees C in the presence of dithiothreitol (DTT), the chimeras are seen to move from the RER and through the Golgi stack. With this temperature shift the direct connections with the RER are lost and free vesicles form; some of these vesicles contain HRP reaction product which is much more concentrated than in the adjacent RER while others lack reaction product entirely. In cells expressing SSHRPKDEL, DAB reaction product remains distributed throughout the RER, the VTCs, and the cis-Golgi network for prolonged periods in the presence of DTT and almost all of the vesicles which form at 37 degrees C are DAB-positive. Together these observations demonstrate that all three chimeras are transported from the RER to the cis-Golgi in free, 40-60-nm vesicles at 37 degrees C. They also suggest that the retrograde traffic which carries SSHRPKDEL back to the RER is probably mediated by vesicles with a similar morphology but which, in cells expressing membrane-anchored chimeras, lack detectable reaction product.  相似文献   

2.
Antibodies to the Golgi complex and the rough endoplasmic reticulum   总被引:120,自引:78,他引:42       下载免费PDF全文
Rabbits were immunized with membrane fractions from either the Golgi complex or the rough endoplasmic reticulum (RER) by injection into the popliteal lymph nodes. The antisera were then tested by indirect immunofluorescence on tissue culture cells or frozen, thin sections of tissue. There were may unwanted antibodies to cell components other than the RER or the Golgi complex, and these were removed by suitable absorption steps. These steps were carried out until the pattern of fluorescent labeling was that expected for the Golgi complex or RER. Electron microscopic studies, using immunoperoxidase labeling of normal rat kidney (NRK) cells, showed that the anti-Golgi antibodies labeled the stacks of flattened cisternae that comprise the central feature of the Golgi complex, many of the smooth vesicles around the stacks, and a few coated vesicles. These antibodies were directed, almost entirely, against a single polypeptide with an apparent molecular weight of 135,000. The endoplasmic reticulum (ER) in NRK cells is an extensive, reticular network that pervades the entire cell cytoplasm and includes the nuclear membrane. The anit-RER antibodies labeled this structure alone at the light and electron microscopic levels. They were largely directed against four polypeptides with apparent molecular weights of 29,000, 58,000, 66,000, and 91,000. Some examples are presented, using immunofluorescence microscopy, where these antibodies have been used to study the Golgi complex and RER under a variety of physiological and experimental condition . For biochemical studies, these antibodies should prove useful in identifying the origin of isolated membranes, particularly those from organelles such as the Golgi complex, which tend to lose their characteristic morphology during isolation.  相似文献   

3.
The mutant Chinese hamster ovary cell line MT58 contains a thermosensitive mutation in CTP:phosphocholine cytidylyltransferase, the regulatory enzyme in the CDP-choline pathway. As a result, MT58 cells have a 50% decrease in their phosphatidylcholine (PC) level within 24 h when cultured at the nonpermissive temperature (40°C). This is due to a relative rapid breakdown of PC that is not compensated for by the inhibition of de novo PC synthesis. Despite this drastic decrease in cellular PC content, cells are viable and can proliferate by addition of lysophosphatidylcholine. By [3H]oleate labeling, we found that the FA moiety of the degraded PC is recovered in triacylglycerol. In accordance with this finding, an accumulation of lipid droplets is seen in MT58 cells. Analysis of PC-depleted MT58 cells by electron and fluorescence microscopy revealed a partial dilation of the rough endoplasmic reticulum, resulting in spherical structures on both sites of the nucleus, whereas the morphology of the plasma membrane, mitochondria, and Golgi complex was unaffected. In contrast to these morphological observations, protein transport from the ER remains intact. Surprisingly, protein transport at the level of the Golgi complex is impaired. Our data suggest that the transport processes at the Golgi complex are regulated by distal changes in lipid metabolism.  相似文献   

4.
A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393-406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)-associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an approximately 750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well.  相似文献   

5.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

6.
The SEC13 gene of Saccharomyces cerevisiae is required in vesicle biogenesis at a step before or concurrent with the release of transport vesicles from the ER membrane. SEC13 encodes a 33-kD protein with sequence homology to a series of conserved internal repeat motifs found in beta subunits of heterotrimeric G proteins. The product of this gene, Sec13p, is a cytosolic protein peripherally associated with membranes. We developed a cell-free Sec13p-dependent vesicle formation reaction. Sec13p-depleted membranes and cytosol fractions were generated by urea treatment of membranes and affinity depletion of a Sec13p-dihydrofolate reductase fusion protein, respectively. These fractions were unable to support vesicle formation from the ER unless cytosol containing Sec13p was added. Cytosolic Sec13p fractionated by gel filtration as a large complex of about 700 kD. Fractions containing the Sec13p complex restored activity to the Sec13p- dependent vesicle formation reaction. Expression of SEC13 on a multicopy plasmid resulted in overproduction of a monomeric form of Sec13p, suggesting that another member of the complex becomes limiting when Sec13p is overproduced. Overproduced, monomeric Sec13p was inactive in the Sec13p- dependent vesicle formation assay.  相似文献   

7.
Membrane traffic between the endoplasmic reticulum and Golgi apparatus is a highly regulated process that uses distinct anterograde and retrograde pathways. These pathways link two organelles that together function as a dynamic membrane system specialized for the biosynthesis and sorting of membrane to be used throughout the cell. The nature and underlying biochemical control of membrane transport along these pathways is thought to be tied to a common regulatory system involving assembly and disassembly of cytosolic proteins on membranes.  相似文献   

8.
Coat protein complex II (COPII)-coated vesicles/carriers, which mediate export of proteins from the endoplasmic reticulum (ER), are formed at special ER subdomains in mammals, termed ER exit sites or transitional ER. The COPII coat consists of a small GTPase, Sar1, and two protein complexes, Sec23-Sec24 and Sec13-Sec31. Sec23-Sec24 and Sec13-Sec31 appear to constitute the inner and the outermost layers of the COPII coat, respectively. We previously isolated two mammalian proteins (p125 and p250) that bind to Sec23. p125 was found to be a mammalian-specific, phospholipase A(1)-like protein that participates in the organization of ER exit sites. Here we show that p250 is encoded by the KIAA0310 clone and has sequence similarity to yeast Sec16 protein. Although KIAA0310p was found to be localized at ER exit sites, subcellular fractionation revealed its predominant presence in the cytosol. Cytosolic KIAA0310p was recruited to ER membranes in a manner dependent on Sar1. Depletion of KIAA0310p mildly caused disorganization of ER exit sites and delayed protein transport from the ER, suggesting its implication in membrane traffic out of the ER. Overexpression of KIAA0310p affected ER exit sites in a manner different from that of p125. Binding experiments suggested that KIAA0310p interacts with both the inner and the outermost layer coat complexes, whereas p125 binds principally to the inner layer complex. Our results suggest that KIAA0310p, a mammalian homologue of yeast Sec16, builds up ER exit sites in cooperation with p125 and plays a role in membrane traffic from the ER.  相似文献   

9.
L Hicke  R Schekman 《The EMBO journal》1989,8(6):1677-1684
The SEC23 gene product (Sec23p) is required for transport of secretory, plasma membrane, and vacuolar proteins from the endoplasmic reticulum to the Golgi complex in Saccharomyces cerevisiae. Molecular cloning and biochemical characterization demonstrate that Sec23p is an 84 kd unglycosylated protein that resides on the cytoplasmic surface of a large structure, possibly membrane or cytoskeleton. Vigorous homogenization of yeast cells or treatment of yeast lysates with reagents that desorb peripheral membrane proteins releases Sec23p in a soluble form. Protein transport from the endoplasmic reticulum to the Golgi in vitro depends upon active Sec23p. Thermosensitive transport in sec23 mutant lysates is restored to normal when a soluble form of wild-type Sec23p is added, providing a biochemical complementation assay for Sec23p function. Gel filtration of yeast cytosol indicates that functional Sec23p is a large oligomer or part of a multicomponent complex.  相似文献   

10.
The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell-free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions of several GTP-binding proteins, peripheral membrane proteins, and an integral membrane protein during ER to Golgi transport are discussed here.  相似文献   

11.
M J Lewis  H R Pelham 《Cell》1992,68(2):353-364
Resident luminal endoplasmic reticulum (ER) proteins carry a targeting signal (usually KDEL in animal cells) that allows their retrieval from later stages of the secretory pathway. In yeast, the receptor that promotes this selective retrograde transport has been identified as the product of the ERD2 gene. We describe here the properties of a human homolog of this protein (hERD2). Overproduction of hERD2 improves retention of a protein with a weakly recognized variant signal (DDEL). Moreover, overexpression of KDEL or DDEL ligands causes a redistribution of hERD2 from the Golgi apparatus to the ER. Mutation of hERD2 alters the ligand specificity of this effect, implying that it interacts directly with the retained proteins. Ligand control of receptor movement may limit retrograde flow and thus minimize fruitless recycling of secretory proteins.  相似文献   

12.
Molecularly distinct sets of SNARE proteins localize to specific intracellular compartments and catalyze membrane fusion events. Although their central role in membrane fusion is appreciated, little is known about the mechanisms by which individual SNARE proteins are targeted to specific organelles. Here we investigated functional domains in Sec22p that direct this SNARE protein to the endoplasmic reticulum (ER), to Golgi membranes, and into SNARE complexes with Bet1p, Bos1p, and Sed5p. A series of Sec22p deletion mutants were monitored in COPII budding assays, subcellular fractionation gradients, and SNARE complex immunoprecipitations. We found that the N-terminal "profilin-like" domain of Sec22p was required but not sufficient for COPII-dependent export of Sec22p from the ER. Interestingly, versions of Sec22p that lacked the N-terminal domain were assembled into ER/Golgi SNARE complexes. Analyses of Sec22p SNARE domain mutants revealed a second signal within the SNARE motif (between layers -4 and -1) that was required for efficient ER export. Other SNARE domain mutants that contained this signal were efficiently packaged into COPII vesicles but failed to assemble into SNARE complexes. Together these results indicated that SNARE complex formation is neither required nor sufficient for Sec22p packaging into COPII transport vesicles and subsequent targeting to the Golgi complex. We propose that the COPII budding machinery has a preference for unassembled ER/Golgi SNARE proteins.  相似文献   

13.
M J Lewis  J C Rayner    H R Pelham 《The EMBO journal》1997,16(11):3017-3024
Intracellular vesicular traffic is controlled in part by v- and t-SNAREs, integral membrane proteins which allow specific interaction and fusion between vesicles (v-SNAREs) and their target membranes (t-SNAREs). In yeast, retrograde transport from the Golgi complex to the ER is mediated by the ER t-SNARE Ufe1p, and also requires two other ER proteins, Sec20p and Tip20p, which bind each other. Although Sec20p is not a typical SNARE, we show that both it and Tip20p can be co-precipitated with Ufe1p, and that a growth-inhibiting mutation in Ufe1p can be compensated by a mutation in Sec20p. Furthermore, Sec22p, a v-SNARE implicated in forward transport from ER to Golgi, co-precipitates with Ufe1p and Sec20p, and SEC22 acts as an allele-specific multicopy suppressor of a temperature-sensitive ufe1 mutation. These results define a new functional SNARE complex, with features distinct from the plasma membrane and cis-Golgi complexes previously identified. They also show that a single v-SNARE can be involved in both anterograde and retrograde transport, which suggests that the mere presence of a particular v-SNARE may not be sufficient to determine the preferred target for a transport vesicle.  相似文献   

14.
The specificity of intracellular vesicle transport is mediated in part by tethering factors that attach the vesicle to the destination organelle prior to fusion. We have identified a protein, Dor1p, that is involved in vesicle targeting to the yeast Golgi apparatus and found it to be associated with seven further proteins. Identification of these revealed that they include Sec34p and Sec35p, the two known components of the Sec34/35 complex previously proposed to tether vesicles to the Golgi. Of the six previously uncharacterized components, four have homologs in higher eukaryotes, including a subunit of a mammalian Golgi transport complex. Furthermore, several of the proteins show distant homology to components of two other putative tethering complexes, the exocyst and the Vps52/53/54 complex, revealing that tethering factors involved in different membrane traffic steps are structurally related.  相似文献   

15.
Neo1p from Saccharomyces cerevisiae is an essential P-type ATPase and potential aminophospholipid translocase (flippase) in the Drs2p family. We have previously implicated Drs2p in protein transport steps in the late secretory pathway requiring ADP-ribosylation factor (ARF) and clathrin. Here, we present evidence that epitope-tagged Neo1p localizes to the endoplasmic reticulum (ER) and Golgi complex and is required for a retrograde transport pathway between these organelles. Using conditional alleles of NEO1, we find that loss of Neo1p function causes cargo-specific defects in anterograde protein transport early in the secretory pathway and perturbs glycosylation in the Golgi complex. Rer1-GFP, a protein that cycles between the ER and Golgi complex in COPI and COPII vesicles, is mislocalized to the vacuole in neo1-ts at the nonpermissive temperature. These phenotypes suggest that the anterograde protein transport defect is a secondary consequence of a defect in a COPI-dependent retrograde pathway. We propose that loss of lipid asymmetry in the cis Golgi perturbs retrograde protein transport to the ER.  相似文献   

16.
Highly enriched Golgi complex and endoplasmic reticulum fractions were isolated from total microsomes obtained from Trypanosoma brucei, Trypanosoma congolense, and Trypanosoma vivax, and tested for glycosyltransferase activity. Purity of the fractions was assessed by electron microscopy as well as by biochemical analysis. The relative distribution of all the glycosyltransferases was remarkably similar for the three species of African trypanosomes studied. The Golgi complex fraction contained most of the galactosyltransferase activity followed by the smooth and rough endoplasmic reticulum fractions. The dolichol- dependent mannosyltransferase activities were highest for the rough endoplasmic reticulum, lower for the smooth endoplasmic reticulum, and lowest for the Golgi complex. Although the dolichol-independent form of N-acetylglucosaminyltransferase was essentially similar in all the fractions, the dolichol-dependent form of this enzyme was much higher in the endoplasmic reticulum fractions than in the Golgi complex fraction. Inhibition of this latter activity in the smooth endoplasmic reticulum fraction by tunicamycin A1 suggests that core glycosylation of the variable surface glycoprotein may occur in this organelle and not in the rough endoplasmic reticulum as previously assumed.  相似文献   

17.
Several lines of investigation have shown that protein transport from the endoplasmic reticulum to the Golgi is more complex than previously imagined. Dynamic sorting of both membrane and soluble proteins is now believed to occur on the cis side of the Golgi apparatus with some proteins returning to the endoplasmic reticulum while others travel onwards.  相似文献   

18.
Using either permeabilized cells or microsomes we have reconstituted the early events of the yeast secretory pathway in vitro. In the first stage of the reaction approximately 50-70% of the prepro-alpha-factor, synthesized in a yeast translation lysate, is translocated into the endoplasmic reticulum (ER) of permeabilized yeast cells or directly into yeast microsomes. In the second stage of the reaction 48-66% of the ER form of alpha-factor (26,000 D) is then converted to the high molecular weight Golgi form in the presence of ATP, soluble factors and an acceptor membrane fraction; GTP gamma S inhibits this transport reaction. Donor, acceptor, and soluble fractions can be separated in this assay. This has enabled us to determine the defective fraction in sec23, a secretory mutant that blocks ER to Golgi transport in vivo. When fractions were prepared from mutant cells grown at the permissive or restrictive temperature and then assayed in vitro, the acceptor Golgi fraction was found to be defective.  相似文献   

19.
The role of COPII components in endoplasmic reticulum (ER)-Golgi transport, first identified in the yeast Saccharomyces cerevisiae, has yet to be fully characterized in higher eukaryotes. A human cDNA whose predicted amino acid sequence showed 70% similarity to the yeast Sec13p has previously been cloned. Antibodies raised against the human SEC13 protein (mSEC13) recognized a cellular protein of 35 kDa in both the soluble and membrane fractions. Like the yeast Sec13p, mSEC13 exist in the cytosol in both monomeric and higher-molecular-weight forms. Immunofluorescence microscopy localized mSEC13 to the characteristic spotty ER-Golgi intermediate compartment (ERGIC) in cells of all species examined, where it colocalized well with the KDEL receptor, an ERGIC marker, at 15 degrees C. Immunoelectron microscopy also localized mSEC13 to membrane structures close to the Golgi apparatus. mSEC13 is essential for ER-to-Golgi transport, since both the His6-tagged mSEC13 recombinant protein and the affinity-purified mSEC13 antibody inhibited the transport of restrictive temperature-arrested vesicular stomatitis virus G protein from the ER to the Golgi apparatus in a semi-intact cell assay. Moreover, cytosol immunodepleted of mSEC13 could no longer support ER-Golgi transport. Transport could be restored in a dose-dependent manner by a cytosol fraction enriched in the high-molecular-weight mSEC13 complex but not by a fraction enriched in either monomeric mSEC13 or recombinant mSEC13. As a putative component of the mammalian COPII complex, mSEC13 showed partially overlapping but mostly different properties in terms of localization, membrane recruitment, and dynamics compared to that of beta-COP, a component of the COPI complex.  相似文献   

20.
《The Journal of cell biology》1993,122(6):1155-1167
Using a novel in vitro assay which allows us to distinguish vesicle budding from subsequent targeting and fusion steps, we provide the first biological evidence that beta-COP, a component of non-clathrin- coated vesicles believed to mediate intraGolgi transport, is essential for transport of protein from the ER to the cis-Golgi compartment. Incubation in the presence of beta-COP specific antibodies and F(ab) fragments prevents the exit of vesicular stomatitis virus glycoprotein (VSV-G) from the ER. These results demonstrate that beta-COP is required for the assembly of coat complexes mediating vesicle budding. Fractionation of rat liver cytosol revealed that a major biologically active form of beta-COP was found in a high molecular pool (> 1,000 kD) distinct from coatomer and which promoted efficient vesicle budding from the ER. Surprisingly, rab1B could be quantitatively coprecipitated with this beta-COP containing complex and was also essential for function. We suggest that beta-COP functions in an early step during vesicle formation and that rab1B may be recruited as a component of a precoat complex which participates in the export of protein from the ER via vesicular carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号