首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity and density of generalist predators, such as carabid beetles, rove beetles and spiders, may increase in response to: (1) increased availability of prey from the belowground subsystem and/or (2) enhanced complexity of aboveground vegetation. Organic farming practices support decomposer populations and enhance habitat complexity due to an increased weed density. A response by generalist predators to such below‐ or aboveground changes could affect predation rates on herbivores in the aboveground food web. We tested this hypothesis in a replicated field experiment conducted in a winter wheat field, where increased predator activity could lead to improved control of herbivorous pests. In a crossed design, we increased and lowered densities of decomposer prey, and manipulated vegetation complexity using artificial plants in order to examine the effect of structural complexity in isolation from effects of plant‐attracted additional prey. Isotomid Collembola exhibited lowest activity‐densities (AD) in plots treated with soil insecticide and had gradually increasing AD in untreated plots and plots receiving detrital subsidies. Carabid beetles and cursorial spiders did not respond to increased availability of isotomid prey, and they unexpectedly displayed higher AD in the structurally less‐complex plots. Aphid density mirrored the positive response of isotomids to detrital subsidies, suggesting that aphids benefited from reduced predation due to predators switching to abundant prey in the decomposer subsystem. The absence of a numerical response by surface‐active predators apparently strengthened this indirect effect of isotomids on aphids. Our results suggest that indirect predator‐mediated prey‐prey interactions can reduce beneficial effects of detrital subsidies on pest suppression. We further demonstrated that generalist predators may not per se benefit from structural complexity. Both results document the challenges associated with management practices that support generalist predators, as these measures may not necessarily improve herbivore suppression.  相似文献   

2.
Oelbermann K  Langel R  Scheu S 《Oecologia》2008,155(3):605-617
We investigated the linkage between the detrital subsystem and generalist predators of meadow ecosystems by manipulating prey availability in two different ways: we increased resource availability for the decomposer subsystem and thereby decomposer prey by adding mulch materials (detritus enhancement), and we added fruitflies (Drosophila melanogaster, Diptera; prey enhancement) to fenced plots. Both supplemented materials significantly differed in their 13C/12C and 15N/14N ratios from those of the natural litter. We measured density responses of detritivorous, herbivorous and predaceous arthropods to the increased resource supply. We used ratios of natural stable isotopes of N and C in arthropod tissues to trace the flux from the added resources to consumers and to relate density responses of consumers to changes in resource supply. Effects of resource enhancement propagated through at least two trophic levels, resulting in higher densities of major decomposer and predator taxa. Effects of detritus enhancement were much stronger than those of prey enhancement. Signatures of δ13C proved density responses of Collembola taxa to be related to the added mulch materials. Among generalist predators, densities of juvenile wolf spiders (Lycosidae) responded more to detritus-enhancement than to prey-enhancement treatments. In contrast, the density of the web-building linyphiid and the non-web gnaphosid spiders remained unaffected. Each spider taxon, including those which did not respond numerically, was significantly enriched in 13C in detritus-enhancement treatments, suggesting that they gain energy from the decomposer system. Numbers of herbivores—cicadellids and aphids—were similar in each of the treatments, indicating that they were unaffected by changes in predator density. Our results indicate that the lack of a numerical response to resource supplementation is not necessarily due to the absence of a trophic linkage, but may be caused by compensatory changes in mortality factors such as cannibalism and intraguild predation.  相似文献   

3.
The spatial distribution of predators and their prey is affected by their joint use of space. While the formation of such spatial patterns may be driven by density‐dependent and ‐independent factors our knowledge on the contribution of different land‐use activities on the formation of spatial patterns between predators and prey remains very limited. Agriculture is one of the most prevailing land‐use activities with strong effects on invertebrate densities and structural habitat conditions. Here, we used replicated conventionally and organically managed winter wheat fields to investigate the effects of agricultural land‐use on the spatial patterns of generalist predators and decomposer prey. We then identified the explanatory power of density‐dependent (prey and predator activity density) and density‐independent (vegetation structure) predictors for the observed spatial patterns. Generalist predators were regularly distributed only in conventionally managed fields and this pattern intensified with decreasing Collembola prey availability and increasing spider activity density. Segregation between carabid and spider predators was strongest in fields with lowest wheat plant height, suggesting more intense intraguild interactions in structurally less complex habitats. Collembola were aggregated independent of management and aggregation was strongest in fields with highest Collembola and carabid activity density. Spiders and Collembola prey were associated, but higher aphid densities under conventional management weakened or interrupted this spatial relationship. We conclude that active control of crop plant physiognomy by growth hormones and herbicides in conventionally managed fields promotes predator–predator segregation and that a high availability of aphid prey seems to decouple predator–Collembola prey associations. Our results emphasise the need for a more mechanistic understanding of the effects of land‐use on the formation of spatial patterns and species interactions, especially under scenarios of environmental change and an ongoing loss of biodiversity.  相似文献   

4.
Detrital infusion into grazing food web is considered to be important in terrestrial communities, but there is hardly any experimental evidence showing that generalist predators aboveground are sustained by belowground detritivores. We established two types of experimental plots in the forest floor, one with sheets on the ground to prevent the emergence of belowground arthropods and the other without sheet, to test the hypotheses that 1) reduced input of detrital arthropods decreases the abundance and species richness of web spiders (major generalist predators in terrestrial ecosystems) and 2) lower number of spiders increases the abundance of herbivorous arthropods. We found that spiders were less abundant in plots where the emergence of detrital arthropods was reduced, while the abundance of herbivores did not significantly increase in these plots. These results provide empirical evidence that organisms moving from underground to aboveground may be important for the maintenance of aboveground predators, although the cascading effect of predator abundance on the grazing food chain was not detected in the present study.  相似文献   

5.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

6.
There is evidence for both positive and negative effects of generalist predators on pest populations and the various reasons for these contrasting observations are under debate. We studied the influence of a generalist predator, Pardosa lugubris (Walckenaer) (Araneae: Lycosidae), on an aphid pest species, Rhopalosiphum padi (L.) (Hemiptera: Aphididae; low food quality for the spider), and its host plant wheat, Triticum spec. (Poaceae). We focused on the role of spider density and the availability of alternative prey, Drosophila melanogaster Meigen (Diptera: Drosophilidae; high food quality). The presence of spiders significantly affected plant performance and aphid biomass. Alternative prey and spider density strongly interacted in affecting aphids and plants. High spider density significantly improved plant performance but also at low spider density plants benefited from spiders especially in the presence of alternative prey. The results suggest that generalist arthropod predators may successfully reduce plant damage by herbivores. However, their ability to control prey populations varies with predator nutrition, the control of low-quality prey being enhanced if alternative higher-quality prey is available.  相似文献   

7.
Different functional groups of generalist predators may complement each other in controlling prey populations; but intraguild interactions, common among generalist predators, may also reduce the strength of top–down control. In natural communities greater alterations to ecosystem function are expected if a whole functional group declines in abundance or is lost. Therefore studying functional group diversity is important for predicting effects of predator loss. We studied the top–down impact of web‐building spiders, hunting spiders and ants, which are highly abundant generalist predators in most terrestrial ecosystems, on prey from the herbivore and decomposer system of a grassland food web. The density of the three predator groups was manipulated by continuous removal in a three‐factorial designed field experiment, which was carried out for two years. We found no positive effect of increasing predator functional group richness on prey control. However there was evidence for strong composition effects between the functional groups. The presence of ants in predator assemblages reduced the prey suppression through mostly trait‐mediated intraguild interactions, while hunting and web‐building spiders contributed additively to prey suppression and reduced the density of herbivore and decomposer prey by 50–60%. A trophic cascade on plant biomass triggered by web‐builders and hunting spiders was diminished at levels of higher predator group diversity. In conclusion, our experiments showed that intraguild interactions strongly influence the strength of top–down control by generalist predators. Among spiders there was evidence for a positive relation between functional group richness and prey suppression but the overall outcome strongly depended on the occurrence of interference, driven by trait‐mediated indirect interactions.  相似文献   

8.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   

9.
The presence of generalist predators is known to have important ecological impacts in several fields. They have wide applicability in the field of biological control. However, their role in the spatial distribution of predator and prey populations is still not clear. In this paper, the spatial dynamics of a predator–prey system is investigated by considering two different types of generalist predators. In one case, it is considered that the predator population has an additional food source and can survive in the absence of the prey population. In the other case, the predator population is involved in intraguild predation, i.e., the source of the additional food of the predator coincides with the food source of the prey population and thus both prey and predator populations compete for the same resource. The conditions for linear stability and Turing instability are analyzed for both the cases. In the presence of generalist predators, the system shows different pattern formations and spatiotemporal chaos which has important implications for ecosystem functioning not only in terms of their predictability, but also in influencing species persistence and ecosystem stability in response to abrupt environmental changes. This study establishes the importance of the consideration of spatial dynamics while determining optimal strategies for biological control through generalist predators.  相似文献   

10.
Since generalist predators feed on a variety of prey species they tend to persist in an ecosystem even if one particular prey species is absent. Predation by generalist predators is typically characterized by a sigmoidal functional response, so that predation pressure for a given prey species is small when the density of that prey is low. Many mathematical models have included a sigmoidal functional response into predator–prey equations and found the dynamics to be more stable than for a Holling type II functional response. However, almost none of these models considers alternative food sources for the generalist predator. In particular, in these models, the generalist predator goes extinct in the absence of the one focal prey. We model the dynamics of a generalist predator with a sigmoidal functional response on one dynamic prey and fixed alternative food source. We find that the system can exhibit up to six steady states, bistability, limit cycles and several global bifurcations.  相似文献   

11.
The generalist predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid, Aphis glycines Matsumura. Soybean thrips, Neohydatothrips variabilis (Beach), serve as an important prey resource for O. insidiosus in soybeans, sustaining the predator's population before the arrival of the soybean aphid. Although generalist predators can forage on a broad range of prey, they may show distinct preferences for particular prey, attacking prey at levels disproportionate to their relative numbers. To assess the preference of O. insidiosus for soybean aphid and soybean thrips, attack rates of nymphal and adult O. insidiosus were measured in the laboratory. For both adults and nymphs, the number of prey attacked increased as more prey were provided. For nymphs, the total number of prey attacked increased as the predator matured. In general, the number of prey attacked by adult predators was relatively constant as the predator aged. Both O. insidiosus nymphs and adults displayed a preference for soybean thrips, by disproportionately attacking soybean thrips over soybean aphid regardless of the relative densities of the two prey. We discuss implications of this preference on O. insidiosus life history characteristics and the potential impact on O. insidiosus-prey dynamics in the field.  相似文献   

12.
The drive towards a more sustainable and integrated approach to pest management has engendered a renewed interest in conservation biological control, the role of natural enemy communities and their interactions with prey. Monoclonal antibodies have provided significant advances in enhancing our knowledge of trophic interactions and can be employed to help quantify predation on target species. The tetragnathid spider Pachygnatha degeeri Sundevall was collected from fields of winter wheat in the UK and assayed by ELISA for aphid proteins. It was demonstrated that this spider did not simply consume greater quantities of aphids because it was bigger. In addition, P. degeeri contained significantly greater concentrations of aphid in their guts than other spiders, showing that aphids comprised a greater proportion of their diet. Although P. degeeri constituted only 6% of the spider population numerically, females and males respectively contained 16% and 37% of total aphid proteins within all spiders screened, significantly more than their density would predict. These spiders also preyed upon aphids at a disproportionately high rate in June, during the aphid establishment phase, theoretically the best time for limiting growth in the aphid population. Although less abundant than other generalist predators, the capability of these hunting spiders to consume large numbers of aphids highlights them as a more significant component of the predator complex than had previously been realized. Limitation of aphid numbers early in the year by generalist predators provides more time for the specialist aphid predators and parasitoids to move in.  相似文献   

13.
1. Plant secondary metabolites can govern prey–predator interactions by altering the diet breadth of predators and sometimes provide an ecological refuge to prey. Brassicaceae plants and their specialist pests can be used as a model system for understanding the role of chemically mediated effects restricting the diet breadth of natural enemies, and consequently the occurrence of enemy‐free space for the specialist pest. 2. The objective of the present study was to test the performance of the generalist predator Episyrphus balteatus De Geer (Diptera: Syrphidae) fed on the specialist herbivore Brevicoryne brassicae L.(Homoptera: Aphididae), reared on two different brassica species: black mustard (Brassica nigra), a wild species with high levels of sinigrin; and canola (Brassica napus), a cultivated species without sinigrin. 3. The preference and performance of the predator and the performance of the prey were measured. Sinigrin was quantified by high‐performance liquid chromatography in both leaf samples and aphids reared on the two host plants. 4. The cabbage aphid performed better on canola than on black mustard. The performance of the predator on this aphid when reared on canola was clearly better than when reared on black mustard. Females had a higher overall preference for cabbage aphids reared on canola than on black mustard. 5. The ability of aphids reared on plants with high glucosinolate content to reduce the performance of their generalist predators indicates that the presence of B. nigra may provide enemy‐free space for the cabbage aphid from its predator, a concept that has useful application in the context of biological control for agricultural systems.  相似文献   

14.
Although predator effects on the number of locally coexisting species are well understood, there are few formal predictions of how these local predator effects influence patterns of prey diversity at larger spatial scales. Building on the theory of island biogeography, we develop a simple model that describes how predators can alter the scaling of diversity in prey metacommunities and compares the effects of generalist and specialist predators on regional prey diversity. Generalist predators, which consume prey randomly with respect to species identity, are predicted to reduce α‐diversity and increase β‐diversity thereby maintaining regional diversity (γ‐diversity). Alternatively, specialist predators, which filter out prey species intolerant of predators, are predicted to reduce bothα‐diversity andβ‐diversity by causing the same prey species to be extirpated in each locality, resulting in regional prey species extinctions and lower γ‐diversity. These distinct effects of generalist and specialist predators on prey diversity at different spatial scales are uniquely shaped by the extent of predation within those metacommunities. Overall, our model results make general predictions for how different types of predators can differentially affect prey diversity across spatial scales, allowing a more complete understanding of the possible implications of predator eradications or introductions for biodiversity.  相似文献   

15.
The generalist predation hypothesis predicts that the functional responses of generalist predator species should be quicker than those of specialist predators and have a regulating effect on vole populations. New interpretations of their role in temperate ecosystems have, however, reactivated a debate suggesting generalist predators may have a destabilizing effect under certain conditions (e.g. landscape homogeneity, low prey diversity, temporary dominance of 1 prey species associated with a high degree of dietary specialization). We studied a rich predator community dominated by generalist carnivores ( Martes spp., Vulpes vulpes, Felis catus ) over a 6 yr period in farmland and woodland in France. The most frequent prey were small rodents (mostly Microtus arvalis , a grassland species, and Apodemus spp., a woodland species). Alternative prey were diverse and dominated by lagomorphs ( Oryctolagus cuniculus, Lepus europeus ). We detected a numerical response among specialist carnivores but not among generalist predators. The dietary responses of generalist predators were fairly complex and most often dependent on variation in density of at least 1 prey species. These results support the generalist predation hypothesis. We document a switch to alternative prey, an increase of diet diversity, and a decrease of diet overlap between small and medium-sized generalists during the low density phase of M. arvalis . In this ecosystem, the high density phases of small mammal species are synchronous and cause a temporary specializing of several generalist predator species. This rapid functional response may indicate the predominant role of generalists in low amplitude population cycles of voles observed in some temperate areas.  相似文献   

16.
Practices that enhance abundance and diversity of generalist predators are often employed with the objective of improving biological control of insect pests. Ground beetles and other predators can prey on blueberry maggot, an important pest of blueberries, when mature larvae pupate in the ground. We conducted mesocosm and field experiments to determine if Pterostichus melanarius, a common predatory ground beetle, lowers maggot numbers in compost mulch or when predator and alternative prey abundances are manipulated. At background (field) densities of alternative prey, increasing densities of P. melanarius did not significantly reduce pest numbers in mesocosms containing compost or soil. When alternative prey were removed from compost, beetles reduced pest numbers by up to 35%. In field experiments, maggot numbers were higher when beetles and other predators were excluded from soil plots, but beetle exclusion had no effect in compost plots where both predator and alternative prey numbers were high. Our results indicate that there can be some reduction of blueberry maggot by P. melanarius and other potential predators when there are few alternative prey. However, despite attracting large numbers of predators compost mulch did not lead to a significant reduction in blueberry maggot; in fact, the high abundance of alternative food associated with compost appeared to interfere with beetle predation on blueberry maggot.  相似文献   

17.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used for more than two decades in analyses of food web structure. The utility of isotope ratio measurements is based on the observation that consumer δ13C values are similar (<1‰ difference) to those of their diet, while consumer δ15N values are about 3‰ higher than those of their diet. The technique has been applied most often to aquatic and aboveground terrestrial food webs. However, few isotope studies have examined terrestrial food web structure that includes both above- and belowground (detrital) components. Here, we review factors that may influence isotopic signatures of terrestrial consumers in above- and belowground systems. In particular, we emphasize variations in δ13C and δ15N in belowground systems, e.g., enrichment of 13C and 15N in soil organic matter (likely related to soil microbial metabolism). These enrichments should be associated with the high 13C (~3‰) enrichment in belowground consumers relative to litter and soil organic matter and with the large variation in δ15N (~6‰) of the consumers. Because such enrichment and variation are much greater than the trophic enrichment generally used to estimate consumer trophic positions, and because many general predators are considered dependent on energy and material flows from belowground, the isotopic variation in belowground systems should be taken into account in δ13C and δ15N analyses of terrestrial food webs. Meanwhile, by measuring the δ13C of key predators, the linkage between above- and belowground systems could be estimated based on observed differences in δ13C of primary producers, detritivores and predators. Furthermore, radiocarbon (14C) measurements will allow the direct estimation of the dependence of predators on the belowground systems.  相似文献   

18.
Prey species often distribute themselves patchily in their habitats. In response to this spatial variation in prey density, some predator species aggregate in patches of higher prey density. This paper reviews a series of laboratory experiments to demonstrate the patterns of responses by phytoseiid predators (Phytoseiulus persimilis, Typhlodromus occidentalis and Amblyseius andersoni) to spatial variation in the density of their spider mite prey (Tetranychus urticae) and reveal the behavioural mechanisms underlying the observed patterns. In addition, patterns of aggregation were examined at a variety of spatial scales on plants in greenhouses. The patterns, mechanisms and spatial scale of aggregation in three predatory species are discussed in relation to their varying degrees of polyphagy. The results show that a specialist predator species (1) aggregates more strongly than generalist predators, (2) does so not because it finds prey patches of high density more easily but because it remains in these patches longer than generalist predators and (3) tends to aggregate more often at lower levels of spatial scale than generalist predators. It is suggested that these conclusions, based mainly on laboratory studies of a small sample of species, should be tested in the future on a wider selection of specialist and generalist species at different scales in the field. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
Predators often exert multi-trophic cascading effects in terrestrial ecosystems. However, how such predation may indirectly impact interactions between above- and below-ground biota is poorly understood, despite the functional importance of these interactions. Comparison of rat-free and rat-invaded offshore islands in New Zealand revealed that predation of seabirds by introduced rats reduced forest soil fertility by disrupting sea-to-land nutrient transport by seabirds, and that fertility reduction in turn led to wide-ranging cascading effects on belowground organisms and the ecosystem processes they drive. Our data further suggest that some effects on the belowground food web were attributable to changes in aboveground plant nutrients and biomass, which were themselves related to reduced soil disturbance and fertility on invaded islands. These results demonstrate that, by disrupting across-ecosystem nutrient subsidies, predators can indirectly induce strong shifts in both above- and below-ground biota via multiple pathways, and in doing so, act as major ecosystem drivers.  相似文献   

20.
Predation by generalist predators is difficult to study in the field because of the complex effects of positive and negative interactions within and between predator species and guilds. Predation can be monitored by molecular means, through identification of prey DNA within predators. However, polymerase chain reaction (PCR) amplification of prey DNA from predators cannot discriminate between primary and secondary predation (hyperpredation), in which one predator feeds on another that has recently eaten the target prey. Here we quantify, for the first time, the potential error caused by detection of prey DNA following secondary predation, using an aphid-spider-carabid model. First, the aphid Sitobion avenae was fed to the spider Tenuiphantes tenuis and the carabid Pterostichus melanarius, and the postconsumption detection periods, for prey DNA within predators, were calculated. Aphids were then fed to spiders and the spiders to carabids. Aphid DNA was detected in the predators using primers that amplified 245- and 110-bp fragments of the mitochondrial cytochrome oxidase I gene. Fragment size and predator sex had no significant effect on detection periods. Secondary predation could be detected for up to 8 h, when carabids fed on spiders immediately after the latter had consumed aphids. Beetles tested positive up to 4 h after eating spiders that had digested their aphid prey for 4 h. Clearly, the extreme sensitivity of PCR makes detection of secondary predation more likely, and the only reliable answer in future may be to use PCR to identify, in parallel, instances of intraguild predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号