首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Abstract.— .Drosophila yakuba is widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by a D. yakuba‐like ancestor. The species presently have overlapping ranges on the mountain Pico do São Tome, with some hybridization occurring in this region. Sexual isolation between the species is uniformly high regardless of the source of the populations, and, as in many pairs of Drosophila species, is asymmetrical, so that hybridizations occur much more readily in one direction than the other. Despite the fact that these species meet many of the conditions required for the evolution of reinforcement (the elevation of sexual isolation by natural selection to avoid maladaptive interspecific hybridization), there is no evidence that sexual isolation between the species is highest in the zone of overlap. Sexual isolation is due to evolutionary changes in both female preference for heterospecific males and in the vigor with which males court heterospecific females. Heterospecific matings are also slower to take place than are homospecific matings, constituting another possible form of reproductive isolation. Genetic studies show that, when tested with females of either species, male hybrids having a D. santomea X chromosome mate much less frequently with females of either species than do males having a D. yakuba X chromosome, suggesting that the interaction between the D. santomea X chromosome and the D. yakuba genome causes behavioral sterility. Hybrid F1 females mate readily with males of either species, so that sexual isolation in this sex is completely recessive, a phenomenon seen in other Drosophila species. There has also been significant evolutionary change in the duration of copulation between these species; this difference involves genetic changes in both sexes, with at least two genes responsible in males and at least one in females.  相似文献   

2.
Drosophila santomea Lachaise & Harry, which is endemic to the African island of São Tomé, and its sibling D. yakuba Burla comprise a new model system of speciation. They are morphologically distinguishable only by slight differences in the male genitalia and body coloration. As a previously undescribed difference, the aedeagus of D. yakuba bears a pair of stout spines (the ventral branches of the basal processes (VB)), instead of the paired humps found in D. santomea. Here, we show that this difference works as a lock‐and‐key isolating mechanism between the siblings. During conspecific copulation, D. yakuba females receive the spines in a pair of pocket‐shaped structures, which are protected by hardened plates, in the genitalia. The females of D. santomea, which lack such pockets, are wounded by the spines of the VB when mated with D. yakuba males. This genital mismatching resulted in leakage of the ejaculate, making 80% of the matings infertile and causing a prolonged struggle to separate pairs glued together by the ejaculate.  相似文献   

3.
Abstract.— Drosophila yakuba is a species widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by its common ancestor with D. yakuba. The two species differ strikingly in pigmentation: D. santomea, unlike the other eight species in the D. melanogaster subgroup, almost completely lacks dark abdominal pigmentation. D. yakuba shows the sexually dimorphic pigmentation typical of the group: both sexes have melanic patterns on the abdomen, but males are much darker than females. A genetic analysis of this species difference using morphological markers shows that the X chromosome accounts for nearly 90% of the species difference in the area of abdomen that is pigmented and that at least three genes (one on each major chromosome) are involved in each sex. The order of chromosome effects on pigmentation area are the same in males and females, suggesting that loss of pigmentation in D. santomea may have involved the same genes in both sexes. Further genetic analysis of the interspecific difference between males in pigmentation area and intensity using molecular markers shows that at least five genes are responsible, with no single locus having an overwhelming effect on the trait. The species difference is thus oligogenic or polygenic. Different chromosomal regions from each of the two species influenced pigmentation in the same direction, suggesting that the species difference (at least in males) is due to natural or sexual selection and not genetic drift. Measurements of sexual isolation between the species in both light and dark conditions show no difference, suggesting that the pigmentation difference is not an important cue for interspecific mate discrimination. Using DNA sequence differences in nine noncoding regions, we estimate that D. santomea and D. yakuba diverged about 400,000 years ago, a time similar to the divergences between two other well‐studied pair of species in the subgroup, both of which also involved island colonization.  相似文献   

4.
Drosophila santomea and D. yakuba are sister species that live on the volcanic African island of São Tomé. Previous work has revealed several barriers to gene flow, including sexual isolation, hybrid sterility, and “extrinsic” ecological isolation based on differential adaptation to and preference for temperature. Here, we describe several new “intrinsic” barriers to gene flow—barriers that do not depend on the species’ ecology. These include reduced egg number, reduced egg hatchability, and faster depletion of sperm in interspecific compared to intraspecific matings. Further, hatching interval and egg‐to‐adult development time are significantly longer in interspecific than intraspecific crosses. If a female of either species is initially mated to a heterospecific male, she lays fewer and less‐fertile eggs than if she is first mated to a conspecific male, so that heterospecific matings permanently reduce female fertility. Finally, D. santomea females mated to D. yakuba males do not live as long as virgin or conspecifically mated females. The “poisoning” effects of heterospecific ejaculates may be byproducts of antagonistic sexual selection. Although these species diverged relatively recently, they are clearly separated by many isolating barriers that act both before and after mating.  相似文献   

5.
Abstract Many studies of speciation rely critically on estimates of sexual isolation obtained in the laboratory. Here we examine the sensitivity of sexual isolation to alterations in experimental design and mating environment in two sister species of Drosophila, D. santomea and D. yakuba. We use a newly devised measure of mating frequencies that is able to disentangle sexual isolation from species differences in mating propensity. Variation in fly density, presence or absence of a quasi‐natural environment, degree of starvation, and relative frequency of species had little or no effect on sexual isolation, but one factor did have a significant effect: the possibility of choice. Designs that allowed flies to choose between conspecific and heterospecific mates showed significantly more sexual isolation than other designs that did not allow choice. These experiments suggest that sexual isolation between these species (whose ranges overlap on the island of STo Tomé) is due largely to discrimination against D. yakuba males by D. santomea females. This suggestion was confirmed by direct observations of mating behavior. Drosophila santomea males also court D. yakuba females less ardently than conspecific females, whereas neither males nor females of D. yakuba show strong mate discrimination. Thus, sexual isolation appears to be a result of evolutionary changes in the derived island endemic D. santomea. Surprisingly, as reported in a companion paper (Llopart et al. 2005), the genotypes of hybrids found in nature do not accord with expectations from these laboratory studies: all F1 hybrids in nature come from matings between D. santomea females and D. yakuba males, matings that occur only rarely in the laboratory.  相似文献   

6.
Summary

The Drosophilid fauna has been less investigated in the Atlantic Afrotropical islands than in the Indian Ocean. Located about 250 km from the continent, the volcanic island of São Tomé has been colonized mostly by natural means, probably by the wind, since the emergence of the island about 15 million years ago, and presumably also by anthropogenic transportation of invasive and domestic species. To date, 37 different Drosophilid species have been mentioned from São Tomé. The present work extends this list to 80 species. The genera Zygothrica, Phorticella and Hypselothyrea are newly recorded from the island. Among these 80 species, only 12 are putatively introduced by human activities, suggesting the preponderance of natural arrivals. Compared to other islands, São Tomé harbours a high diversity of drosophilids. At least 14 species are supposed to be endemic. Future molecular comparisons between the island flies and their continental relatives will probably help to identify other endemic species. The high diversity observed in São Tomé is certainly due to the large size of the island, and to the presence of vast natural altitudinal forests offering a variety of possible habitats. Further collections are likely to lead to an increase of the species list. From now, São Tomé island appears as an excellent laboratory for studying the ecology and evolution of the Drosophila model.  相似文献   

7.
Interspecific hybridization provides the unique opportunity for species to tap into genetic variation present in a closely related species and potentially take advantage of beneficial alleles. It has become increasingly clear that when hybridization occurs, mitochondrial DNA (mtDNA) often crosses species boundaries, raising the possibility that it could serve as a recurrent target of natural selection and source of species' adaptations. Here we report the sequences of 46 complete mitochondrial genomes of Drosophila yakuba and Drosophila santomea, two sister species known to produce hybrids in nature (~3%). At least two independent events of mtDNA introgression are uncovered in this study, including an early invasion of the D. yakuba mitochondrial genome that fully replaced the D. santomea mtDNA native haplotypes and a more recent, ongoing event centred in the hybrid zone. Interestingly, this recent introgression event bears the signature of Darwinian natural selection, and the selective haplotype can be found at low frequency in Africa mainland populations of D. yakuba. We put forward the possibility that, because the effective population size of D. santomea is smaller than that of D. yakuba, the faster accumulation of mildly deleterious mutations associated with Muller's ratchet in the former species may have facilitated the replacement of the mutationally loaded mitochondrial genome of Dsantomea by that of D. yakuba.  相似文献   

8.
Drosophila yakuba and D. santomea are sister species that differ in their levels of abdominal pigmentation; D. yakuba shows heavily pigmented posterior abdominal segments in both sexes, whereas D. santomea lacks dark pigment anywhere on its body. Using naturally collected lines, we demonstrate the existence of altitudinal variation in abdominal pigmentation in D. yakuba but not in D. santomea. We use the variation in pigmentation within D. yakuba and two body‐color mutants in D. yakuba to elucidate selective advantage of differences in pigmentation. Our results indicate that although differences in abdominal pigmentation have no effect on desiccation resistance, lighter pigmentation confers ultraviolet radiation resistance in this pair of species.  相似文献   

9.
The São Tomé Grosbeak Neospiza concolor, endemic to the island of São Tomé (Gulf of Guinea), is one of the least known birds in the world. Formerly considered to be an aberrant weaver (Ploceidae), it is currently placed in a monotypic genus within the true finches (Fringillidae). Phylogenetic inference based on mitochondrial and nuclear sequences confidently identifies N. concolor as an Old World finch (Fringillidae: Carduelinae) within the Crithagra seedeater/canary clade. The São Tomé Grosbeak is therefore the world's largest canary, 50% heavier than the next largest species, and it co‐occurs with a population of its sister species, the Príncipe Seedeater Crithagra rufobrunnea.  相似文献   

10.
D. S. Brown 《Hydrobiologia》1991,209(2):141-153
São Tomé Island has 3 known taxa of freshwater gastropod, here identified to species for the first time; Neritina afra Sowerby, Ferrissia eburnensis Binder and a distinctive form of Bulinus forskalii (Ehrenberg). The Bulinus acts as intermediate host for the parasite Schistosoma intercalatum Fisher, the cause of human schistosomiasis in foci of infection detected in recent years on São Tomé. A morphological characterization of this snail is presented, in respect of the shell, radula and copulatory organ. It is compared with B. forskalii populations sampled on the African mainland (Nigeria, Cameroon, Gabon and Angola) and with related taxa. Despite differences in the shell from the commonly found form of B. forskalii it seems appropriate to identify the São Tomé population as an extreme conchological variant of this taxon.  相似文献   

11.
Oceanic islands accumulate endemic species when new colonists diverge from source populations or by in situ diversification of resident island endemics. The relative importance of dispersal versus in situ speciation in generating diversity on islands varies with a number of archipelago characteristics including island size, age, and remoteness. Here, we characterize interisland dispersal and in situ speciation in frogs endemic to the Gulf of Guinea islands. Using mitochondrial sequence and genome‐wide single‐nucleotide polymorphism data, we demonstrate that dispersal proceeded from the younger island (São Tomé) to the older island (Príncipe) indicating that for organisms that disperse overseas on rafts, dispersal between islands may be determined by ocean currents and not island age. We find that dispersal between the islands is not ongoing, resulting in genotypically distinct but phenotypically similar lineages on the two islands. Finally, we demonstrate that in situ diversification on São Tomé Island likely proceeded in allopatry due to the geographic separation of breeding sites, resulting in phenotypically distinct species. We find evidence of hybridization between the species where their ranges are sympatric and the hybrid zone coincides with a transition from agricultural land to primary forest, indicating that anthropogenic development may have facilitated secondary contact between previously allopatric species.  相似文献   

12.
Three new species of Dryopteris, D. cicatricata J.P. Roux and D. caperata J.P. Roux from São Tomé and D. aurantiaca J.P. Roux from Annobón are described. All three taxa appear to be local endemics. A key to the Dryopteris species occurring on the islands in the Gulf of Guinea is provided.  相似文献   

13.
Reinforcement, a process by which natural selection increases reproductive isolation between populations, has been suggested to be an important force in the formation of new species. However, all existing cases of reinforcement involve an increase in mate discrimination between species. Here, I report the first case of reinforcement of postmating prezygotic isolation (i.e., barriers that act after mating but before fertilization) in animals. On the slopes of the African island of São Tomé, Drosophila yakuba and its endemic sister species D. santomea hybridize within a well-demarcated hybrid zone. I find that D. yakuba females from within this zone, but not from outside it, show an increase in gametic isolation from males of D. santomea, an apparent result of natural selection acting to reduce maladaptive hybridization between species. To determine whether such a barrier could evolve under laboratory conditions, I exposed D. yakuba lines derived from allopatric populations to experimental sympatry with D. santomea, and found that both behavioral and gametic isolation become stronger after only four generations. Reinforcement thus appears to be the best explanation for the heightened gametic isolation seen in sympatry. This appears to be the first example in animals in which natural selection has promoted the evolution of stronger interspecific genetic barriers that act after mating but before fertilization. This suggests that many other genetic barriers between species have been increased by natural selection but have been overlooked because they are difficult to study.  相似文献   

14.
In the Drosophila melanogaster subgroup, the yakuba species complex, D. yakuba, D. santomea and D. teissieri have identical mitochondrial genomes in spite of nuclear differentiation. The first two species can be readily hybridized in the laboratory and produce fertile females and sterile males. They also form hybrids in natural conditions. Nonetheless, the third species, D. teissieri, was thought to be unable to produce hybrids with either D. yakuba or D. santomea. This in turn posed the conundrum of why the three species shared a single mitochondrial genome. In this report, we show that D. teissieri can indeed hybridize with both D. yakuba and D. santomea. The resulting female hybrids from both crosses are fertile, whereas the hybrid males are sterile. We also characterize six isolating mechanisms that might be involved in keeping the three species apart. Our results open the possibility of studying the history of introgression in the yakuba species complex and dissecting the genetic basis of interspecific differences between these three species by genetic mapping.  相似文献   

15.
Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression.  相似文献   

16.
Abstract Despite the genetic tractability of many of Drosophila species, the genus has few examples of the “classic” type of hybrid zone, in which the ranges of two species overlap with a gradual transition from one species to another through an area where hybrids are produced. Here we describe a classic hybrid zone in Drosophila that involves two sister species, Drosophila yakuba and D. santomea, on the island of SaTo Tomé. Our transect of this zone has yielded several surprising and anomalous findings. First, we detected the presence of an additional hybrid zone largely outside the range of both parental species. This phenomenon is, to our knowledge, unique among animals. Second, the genetic analysis using diagnostic molecular markers of the flies collected in this anomalous hybrid zone indicates that nearly all hybrid males are F1s that carry the D. santomea X chromosome. This F1 genotype is much more difficult to produce in the laboratory compared to the genotype from the reciprocal cross, showing that sexual isolation as seen in the laboratory is insufficient to explain the genotypes of hybrids found in the wild. Third, there is a puzzling absence of hybrid females. We suggest several tentative explanations for the anomalies associated with this hybrid zone, but for the present they remain a mystery.  相似文献   

17.
18.
The Tinhosas islands, in São Tomé e Príncipe, host the most important seabird breeding colony in the Gulf of Guinea, but information on its conservation status was hitherto unpublished or anecdotal, the last assessment having been performed in 1997. A two-day expedition to the Tinhosas islands was undertaken to estimate the status of breeding seabirds in 2013. Four of the five seabird species known to breed in São Tomé e Príncipe, namely Brown Booby Sula leucogaster, Sooty Tern Onychoprion fuscatus, Brown Noddy Anous stolidus and Black Noddy Anous minutus, occur on the Tinhosas. A decrease of 80% in Brown Booby numbers, possibly due to occasional exploitation, and a 30% increase in Sooty Tern and Black Noddy numbers, were found compared to 1997 data although survey methods differed. Breeding of Brown Noddy and Madeiran Storm-petrel Hydrobates castro remains unconfirmed. Our estimates confirmed that BirdLife International Important Bird and Biodiversity Area criteria are met for at least one species, the Sooty Tern. The islands are not legally protected, nonetheless, apart from moderate levels of disturbance by fishermen who land on Tinhosa Grande, no alien species were seen, and no immediate threats to the Tinhosas colony were detected. Multiple visits within and between years are recommended, to census breeders, monitor threats and establish breeding phenologies.  相似文献   

19.
Several recent studies have examined the function and evolution of a Drosophila homolog to the human breast cancer susceptibility gene BRCA2, named dmbrca2. We previously identified what appeared to be a recent expansion in the RAD51-binding BRC-repeat array in the ancestor of Drosophila yakuba. In this study, we examine patterns of variation and evolution of the dmbrca2 BRC-repeat array within D. yakuba and its close relatives. We develop a model of how unequal crossing over may have produced the expanded form, but we also observe short repeat forms, typical of other species in the D. melanogaster group, segregating within D. yakuba and D. santomea. These short forms do not appear to be identical-by-descent, suggesting that the history of dmbrca2 in the D. melanogaster subgroup has involved repeat unit contractions resulting in homoplasious forms. We conclude that the evolutionary history of dmbrca2 in D. yakuba and perhaps in other Drosophila species may be more complicated than can be inferred from examination of the published single genome sequences per species.  相似文献   

20.
The study of island biodiversity has inspired many advances in evolutionary biology. However, whether patterns of microorganism diversity are influenced by insularity is poorly understood. In particular, microorganisms that live in symbiotic association, such as the microbiota that inhabit the gastrointestinal tract of bigger animals, are subjected to demographic and coevolutionary processes that may add complexity to the common expectation of impoverished diversity on oceanic islands. Here, we explore this topic by studying the cultivable gut bacteria of two sister species of birds, from São Tomé island and nearby mainland Gabon, the endemic São Tomé thrush Turdus olivaceofuscus and the African thrush Turdus pelios. We found no differences in the diversity of cultivable gut bacteria between these thrushes, suggesting that, unlike what is commonly found for macrofauna, insularity might not represent a strong constraint for gut bacterial diversity. Although further research on complete gut bacterial communities and a broader range of species and areas is needed, our initial results suggest that the cultivable gut microbial community may bypass the diversity loss associated with island colonization. This could arise from intrinsic factors such as their large population sizes within hosts and low rates of extinction. Furthermore, as gut communities are composed mainly by mutualistic bacteria, diversifying selection (against an impoverished bacterial community), may counteract the diversity loss brought about by the stochastic and demographic effects of the founder process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号