首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast 3-phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phospho-transferase, EC 2.7.2.3) is inactivated by phenylglyoxal. Loss of activity correlates with the modification of two arginyl residues, both of which are protected by all of the substrates. The modification is not accompanied by any significant conformational change as determined by optical rotatory dispersion. Ultraviolet difference spectrophotometry indicates that the inactivated enzyme retains its capacity for binding the nucleotide substrates whereas the spectral perturbation characteristic of 3-phosphoglycerate binding is abolished in the modified enzyme. The data suggest that at least one of the two essential arginyl residues is located at or near the 3-phosphoglycerate binding site. A likely role of this residue could be its interaction with the negatively charged phosphate or carboxylate groups of 3-phosphoglycerate.  相似文献   

2.
J M Moore  G H Reed 《Biochemistry》1985,24(20):5328-5333
The structure of the MnIIADP complex at the active site of 3-phosphoglycerate kinase from yeast has been investigated by electron paramagnetic resonance (EPR) spectroscopy. Inhomogeneous broadening in the EPR signals for Mn(II) resulting from unresolved superhyperfine coupling to 17O regiospecifically incorporated into ADP shows that Mn(II) is coordinated to the alpha- and beta-phosphate groups of ADP at the active site of the enzyme. The EPR pattern for the enzyme-MnIIADP complex is characteristic of a predominantly axially symmetric zero-field splitting tensor. The symmetry and magnitude of the zero-field splitting interaction suggest that there is an additional negatively charged oxygen ligand in the coordination sphere of Mn(II). EPR measurements for solutions of the enzyme-MnIIADP complex in 17O-enriched water indicate that there are also two or three water molecules in the coordination sphere of the metal ion. EPR data for complexes with the two epimers of [alpha-17O]ADP have been used to determine the stereochemical configuration of the MnIIADP complex at the active site. EPR spectra for Mn(II) in the enzymic complex with (Rp)-[alpha-17O]ADP show an inhomogeneous broadening due to superhyperfine coupling with 17O whereas spectra for (Sp)-[alpha-17O]ADP complexes are indistinguishable from those for matched samples with unlabeled ADP. These results show that 3-phosphoglycerate kinase selectivity binds the alpha configuration of the alpha, beta chelate of MnIIADP. Addition of 3-phosphoglycerate to form the dead-end complex (enzyme-MnIIADP-3-phosphoglycerate) does not alter the EPR spectrum, but addition of vanadate to this complex causes marked changes in the spectral parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Diffuse X-ray-scattering data give evidence for large-scale structural change in pig muscle 3-phosphoglycerate kinase upon substrate binding. Simultaneous binding of 3-phosphoglycerate and MgATP either to the unmodified enzyme or to its active methylated derivative leads to about an 0.1-nm decrease in radius of gyration. These data coincide well with the previous data for yeast 3-phosphoglycerate kinase. When, instead of methylation, the two reactive thiol groups of pig muscle 3-phosphoglycerate kinase are carboxamidomethylated, the enzyme becomes inactive and the radii of gyration of its 'apo' and 'holo' forms do not differ within limits of experimental error. Thus, a correlation exists between the activity of 3-phosphoglycerate kinase and its substrate-induced large-scale conformational change. This correlation is a strong argument in favor of the functional importance of domain locking in the reaction catalyzed by 3-phosphoglycerate kinase.  相似文献   

4.
Site-specific mutants of yeast phosphoglycerate kinase have been produced in order to investigate the roles of the 'basic-patch' residues, arginine 168 and histidine 170. The fully-conserved residue, arginine 168, has been replaced with a lysine (R168K) and a methionine (R168M) residue, while the non-conserved histidine 170 has been replaced with an aspartate (H170D). Comparison of the 500-MHz 1H-NMR spectra of the mutant proteins with that of wild-type phosphoglycerate kinase shows that the overall fold of the mutants remains essentially unaltered from that of the native enzyme. Results of NOE experiments indicate that there are only very minor changes in structure in the vicinity of the mutations. These mutations have also led to firm sequence-specific resonance assignments to histidines 62, 167 and 170. NMR studies of 3-phosphoglycerate binding show that decreasing the positive charge in the sequence 168-170 reduces the binding of this substrate (by about 15-fold and 4-fold for mutants R168M and H170D respectively). Mutant R168K binds 3-phosphoglycerate with an affinity about twofold less than that of the native enzyme. Significantly, the activity of mutant H170D, measured at saturating substrate concentrations, is unchanged from that of the wild-type enzyme. This indicates that this residue is not of major importance in the binding or reaction of 3-phosphoglycerate. The observation is in agreement with results obtained for the wild-type enzyme, which indicate that 3-phosphoglycerate interacts most strongly with histidine 62 and least strongly with histidine 170, as would be predicted from the X-ray crystal structure. Substitution of positively charged arginine 168 with neutral methionine (or positively charged lysine) does not cause a detectable change in the pKa values of the neighbouring histidine groups, in as much as they remain below 3. The results reported here indicate that the observed reduction in catalytic efficiency relates less to direct electrostatic effects than to the mutants' inability to undergo 3-phosphoglycerate-induced conformational changes.  相似文献   

5.
This study extends, to a series of larger anions, our earlier investigation of the interaction of the trypanocidal drug suramin and other small negatively charged molecules with yeast phosphoglycerate kinase. 1H-NMR structural studies of phosphoglycerate kinase in the presence of varying concentrations of these large molecules (designed to mimic, at one end, the anionic charge distribution in the substrate 3-phosphoglycerate, while possibly being able to interact across the cleft of the enzyme) including inositol 1,4,5-triphosphate, 4-amino-6-trichloroethenyl-1,3- benzenedisulphonamide, gallic acid and sulphasalazine are described. The anion activation and/or inhibition of the enzyme by these molecules are also reported. Evidence that binding to the general anion site in the 'basic patch' region of the protein may be responsible for either the activating or inhibiting effects, while binding at the hydrophobic (catalytic) site leads to inhibition only is presented. A reaction scheme which explains these observations is given.  相似文献   

6.
Proton NMR has been used to study a site-directed mutant of yeast phosphoglycerate kinase in which the interdomain residue His388 has been replaced by a glutamine residue. Using 1H-NMR spectroscopy, it was found that 3-phosphoglycerate binding to the mutant protein induces different conformational effects to those observed for the wild-type enzyme. These differences are not only located at the 3-phosphoglycerate binding site but are also seen as long-range effects at the surface of the protein. Measurements of the Kd for 3-phosphoglycerate from the NMR experiments show that the mutant enzyme has a 30-times reduced affinity for this substrate as compared with the wild-type enzyme. These data are consistent with the suggestion that an aromatic residue at position 388 plays an important role in the proposed hinge-bending mechanism.  相似文献   

7.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

8.
Pig muscle 3-phosphoglycerate kinase was complexed with 1-anilino-8-naphthalenesulfonate (ANS) in order to monitor the binding of substrates to the enzyme. The enzyme-dye interaction did not influence the enzymic activity under the experimental conditions used. By measuring the substrate-dependent change in the fluorescence emission of ANS molecules tightly bound to the enzyme (Kd less than or equal to 0.05 mM), fluorimetric titrations were carried out in 0.1 M Tris/HCl buffer pH 7.5, containing 5 mM mercaptoethanol, at 20 degrees C. The dissociation constants obtained for the separate bindings of 3-phosphoglycerate, MgATP, 1,3-bisphosphoglycerate and MgADP were 0.03 +/- 0.01 mM, 0.15 +/- 0.10 mM, 0.00005 +/- 0.00001 mM and 0.15 +/- 0.10 mM respectively. binding of 3-phosphoglycerate is weakened when MgATP is also bound to the enzyme: the dissociation constant of 3-phosphoglycerate in this ternary complex (0.25 +/- 0.08 mM) is comparable to its Km value (0.38 +/- 0.10 mM). The same weakening can be observed in the non-productive ternary complexes where MgATP is replaced by MgADP (Kd = 0.20 +/- 0.10 mM) or AMP (Kd = 0.12 +/- 0.05 mM), whereas adenosine has no such effect. This indicates the importance of the negatively charged phosphate(s) of nucleotides in influencing the binding of 3-phosphoglycerate. In contrast to 3-phosphoglycerate, the binding of the substrate analogue, glycerol 3-phosphate is practically not affected by the presence of MgATP: the dissociation constant to the free enzyme (0.40 +/- 0.10 mM) is comparable to its inhibitory constant (0.70 +/- 0.20 mM). This finding and the similarity of the dissociation constant of glycerol 3-phosphate binding (0.40 +/- 0.10 mM) and the Km value of 3-phosphoglycerate (0.38 +/- 0.10 mM) suggest that, during the enzymic reaction, binding of 3-phosphoglycerate occurs probably without involvement of the carboxyl group.  相似文献   

9.
Trypanosoma brucei has two phosphoglycerate kinase (PGK) isoenzymes, one is particle-bound and localized in glycosomes while the other is present in the cytosol. The cytosolic isoenzyme (cPGK) was 900-fold purified from cultured procyclic trypanosomes by hydrophobic interaction chromatography on phenyl-Sepharose followed by affinity chromatography on 2',3'-ATP-Sepharose and had a specific activity of 275 units/mg protein. cPGK was compared with the purified glycosomal isoenzyme (gPGK) from bloodstream-form trypanosomes as well as with the commercially available PGKs from yeast, rabbit muscle and Spirulina platensis, a blue-green alga. Like all other PGKs, cPGK was a monomeric protein with a molecular mass of approximately 45 kDa similar to that of the PGKs from other organisms but 2 kDa smaller than that of gPGK. Despite this difference in length and a great difference in isoelectric point, the two trypanosome isoenzymes strongly resembled each other in several respects. The kinetic parameters did not differ significantly from each other or from the PGKs of other organisms. Both trypanosome enzymes resembled the enzyme from S. platensis in that they had an almost absolute requirement for ATP, contrary to the enzymes from yeast and rabbit muscle, which were capable of utilizing GTP and ITP also. This difference in substrate specificity may be related to the amino acid substitutions, Trp 308----His and Ala 306----Glu in the adenine-binding site, which are only found in the two Trypanosoma isoenzymes. Kinetic analysis showed that these substitutions do not prevent binding of the ATP analogues, but probably prevent phosphoryl-group transfer. Both isoenzymes displayed an activity optimum at pH 6.0-9.0 similar to that for the enzyme of yeast. Both gPGK and cPGK were inhibited by the trypanocidal drug Suramin. This inhibition could be described as competitive both with ATP and 3-phosphoglycerate with two inhibitor molecules binding to one molecule of enzyme. The gPGK, however, was much more sensitive (Ki app. = 8.0 microM) to Suramin than either the cPGK (Ki app. = 20 microM) or the enzymes from rabbit muscle (Ki app. = 55 microM), yeast (Ki app. = 167 microM) or S. platensis (Ki app. = 250 microM). It is suggested that positive charges on the enzyme's surface may play an important role in the potentiation of the binding of the negatively charged Suramin molecule.  相似文献   

10.
The time course of refolding of both pig muscle and yeast 3-phosphoglycerate kinase (molecular masses about 47 kDa), as well as their proteolytic C-terminal fragments (30 and 33 kDa, respectively) has been investigated. Very similar refolding kinetics (with half-time between 80-120 s, at 20 degrees C) were observed by fluorescence and ultraviolet absorbance spectroscopy, as well as by activity measurements, for the intact enzyme from both sources. This time course appears not to depend on the time the protein spends in the unfolded state, i.e. it is certainly not controlled by proline isomerization. Furthermore, after removal of a large N-terminal part (molecular mass of about 18 kDa for pig muscle enzyme or 13 kDa for yeast enzyme) of the molecule by proteolysis, refolding of the remaining C-terminal fragment of both proteins follows kinetics virtually indistinguishable from those of the intact protein molecule.  相似文献   

11.
The interaction between 1-anilino-8-naphthalenesulfonate (ANS) and yeast phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) and the use of ANS as a probe for studying the structure and function of phosphoglycerate kinase has been investigated. The interaction has been studied by kinetic methods, equilibrium dialysis, and fluorometric titrations. ANS inhibits the activity of the enzyme. More than one inhibitor site exists. ANS is competitive with MgATP and noncompetitive with 3-phosphoglycerate at the first detected inhibitor binding site. The Ki value is 1-2 mM. Several ANS molecules bind to the enzyme. By fluorometric titrations the first detected site has a dissociation constant that is in the same range as Ki or bigger. When ANS interacts with phosphoglycerate kinase its fluorescence is increased and a blue shift occurs. ANS appears to bind to a strongly hydrophobic site. The fluorescence is sensitive to the addition of substrates. ADP, ATP, or combinations of Mg2+ and nucleotide decreases the fluorescence as does free Mg2+. 3-Phosphoglycerate, on the other hand, increases the fluorescence giving evidence for conformational changes upon 3-phosphoglycerate binding.  相似文献   

12.
C Roustan  A Fattoum  L A Pradel 《Biochimie》1979,61(5-6):663-669
The effect of 7-chloro-4-nitrobenzofurazan on yeast 3-phosphoglycerate kinase causes a modification of one tyrosyl residue concomitantly with a total loss of activity of the enzyme. The modification is not accompanied by any significant conformational change. A total protection against inactivation is observed with the substrates : furthermore, AMP, tripolyphosphate and pyrophosphate afford an effective protection. At pH 9, a shift in the absorbance spectrum of the tyrosine O-nitrobenzofurazan derivative of 3-phosphoglycerate kinase is observed. It can be related to the transfer of the reagent from tyrosine to lysine. The N-nitrobenzofurazan derivative is also completely inactive. It is concluded that a lysine residue is located close to the essential tyrosyl residue.  相似文献   

13.
Site-directed mutagenesis has been used to produce two mutant forms of yeast phosphoglycerate kinase in which the interdomain residue Phe194 has been replaced by a leucine or tryptophan residue. Using 1H-NMR spectroscopy, it was found that the mutations at position 194 induce both local and long-range conformational changes in the protein. It was also found that 3-phosphoglycerate binding to the mutant proteins induces somewhat different conformational effects to those observed for wild-type phosphoglycerate kinase. The affinity of mutant Phe194----Trp for 3-phosphoglycerate was found by NMR studies to be unaffected, while the affinity of Phe194----Leu mutant is reduced by about threefold relative to the wild-type enzyme. The binding of ATP at the electrostatic site of the mutant proteins is also seen to be about three times weaker for the Phe194----Leu mutant when compared to wild-type or Phe194----Leu mutant. These results are discussed in the light of the kinetic studies on the mutants which show that for Phe194----Leu mutant the Km values for both 3-phosphoglycerate and ATP, as well as the Vmax, are decreased relative to the wild-type enzyme, while for mutant Phe194----Trp, the Km values for 3-phosphoglycerate and ATP are unaffected and the Vmax is decreased when compared to wild-type enzyme. Kinetic studies in the presence of sulphate reveal that the anion activation is greater for mutant Phe194----Trp and less for mutant Phe194----Leu, relative to that observed for wild-type phosphoglycerate kinase. The NMR data, taken together with the kinetic data, are consistent with the on and off rates of 3-phosphoglycerate being affected by the mutations at position 194. It is suggested that Phe194 is important for the mobility of the interdomain region and the relative movement of the 3-phosphoglycerate binding site which allows the optimum conformation for catalysis to be attained. Apparently Trp194 reduces the mobility of the interdomain region of the protein, while Leu194 increases it.  相似文献   

14.
An immunological screening technique has been used for the detection of a specific antigen-producing clone in a bank of bacterial colonies containing hybrid plasmids. This technique involves covalent attachment of antiserum to cyanogen bromide-activated paper discs, contact of this paper with lysed colonies on agar plates, and finally detection of the bound antigen with 125I-labeled antibody. Using this method, we have identified an Escherichia coli colony, containing a yeast DNA insert in plasmid ColE1, that produces antigen which combines with antibody directed against purified yeast 3-phosphoglycerate kinase. The hybrid plasmid (pYe57E2) obtained by this procedure has been shown by both biochemical and genetic methods to contain the structural gene PGK for yeast 3-phosphoglycerate kinase. The location of the PGK structural gene on pYe56E2 was determined by immunological screening of E. coli colonies bearing plasmids containing various reconstructions of the original yeast DNA insert. Examination of the expression of the cloned yeast PGK gene in both E. coli and yeast has shown that functional enzyme is synthesized from the cloned gene in yeast, but not in E. coli.  相似文献   

15.
1. Phosphoglycerate kinase has been isolated from a photosynthetic plant tissue, Beta vulgaris leaves. The purification procedure is described. 2. The best preparation had no detectable impurity on electrophoresis, and had a specific activity comparable with the same enzyme from other sources. 3. The molecular weight was not distinguishably different from that of the yeast or muscle enzyme, as measured by polyacrylamide-dodecylsulphate electrophoresis. Measurement of aromatic and sulphydryl residues indicated a close similarity with the yeast enzyme. The enzyme appears to have substantially lower isoelectric point than phosphoglycerate kinases from other sources. 4. Kinetic studies indicated that the affinities for the substrates MgATP2- and 3-phosphoglycerate were not significantly different from those of the 'glycolytic' yeast enzyme. There was no evidence that the B. vulgaris enzyme had specific properties making it more suitable for its gluconeogenic rather than glycolytic role.  相似文献   

16.
The aminoacyl-tRNA synthetases from a crude extract of yeast were shown to bind to heparin-Ultrogel through ionic interactions, in conditions where the corresponding enzymes from Escherichia coli did not. The behaviour of purified lysyl-tRNA synthetases from yeast and E. coli was examined in detail. The native dimeric enzyme from yeast (Mr 2 X 73000) strongly interacted with immobilized heparin or tRNA, as well as with negatively charged liposomes, in conditions where the corresponding native enzyme from E. coli (Mr 2 X 65000) displayed no affinity for these supports. Moreover, the aptitude of the native enzyme from yeast to interact with polyanionic carriers was lost on proteolytic conversion to a fully active modified dimer of Mr 2 X 65500. A structural model is proposed, according to which each subunit of yeast lysyl-tRNA synthetase is composed of a functional domain similar in size to that of the prokaryotic enzyme, contiguous to a 'binding' domain responsible for association to negatively charged carriers. The evolutionary acquisition of this property by lower eukaryotic aminoacyl-tRNA synthetases suggests that it fulfils an important function in vivo, unrelated to catalysis. We propose that it promotes the compartmentalization of these enzymes within the cytoplasm, through associations with as yet unidentified, negatively charged components, by electrostatic interactions too fragile to withstand the usual extraction conditions.  相似文献   

17.
The heterogeneous fluorescence of yeast 3-phosphoglycerate kinase, a hinge-bending enzyme with two tryptophan residues, has been resolved into three emission components using steady-state and time-resolved studies of the fluorescence quenching by acrylamide, iodide and caesium ions at different emission wavelengths. The buried Trp-333 has a blue-shifted heterogeneous emission spectrum characterised by three fluorescence lifetimes, and is inaccessible to quenchers. The surface Trp-308 also has a heterogeneous emission with multiple lifetimes. The emission of Trp-308 can be separated into a blue-shifted emission accessible to acrylamide and caesium only, and a red-shifted emission accessible to all three quenchers.  相似文献   

18.
Previous studies have shown that yeast 3-phosphoglycerate kinase is inhibited by nitration of a single tyrosine residue. Chymotryptic fragmentation of the nitrated protein followed by peptide mapping revealed approximately fifty peptides, one of which was shown to contain a nitrotyrosine residue. Isolation of this unique peptide was accomplished by gel filtration and high voltage paper electrophoresis. The sequence as established by Edman degradation and carboxypeptidase hydrolysis is: Lys-NO2Tyr-Phe-Phe-Lys. Independent observations on the X-ray crystallographic model of yeast phosphoglycerate kinase provides supportive evindence of this sequence. Additionally, a peptide has been isolated containing an active-site carboxyl residue following modification of the enzyme with [14C]methoxyamine.  相似文献   

19.
I I Vlasova  S P Kuprin 《Biofizika》1992,37(5):910-919
A single SH-group of phosphoglycerate kinase from yeast was modified by mercury-containing spin label. The saturation curves of ESR spectra of the spin-labeled enzyme were studied. The paramagnetic ions of Mn2+ bound to the centre of ion nonspecific binding or active centre in the complex with ATP can influence the saturation of the spin-labeled enzyme. The saturation curves of the ESR signal of the spin-labeled enzyme in the presence of paramagnetic complex of CrATP were studied. It has been demonstrated that the second nonspecific centre of ATP binding is located at the active site of the enzyme (3-phosphoglycerate binding centre).  相似文献   

20.
Addition of EDTA to the medium significantly enhances mouse embryo development in culture. Embryos cultured in the absence of EDTA exhibit abnormal increases in glycolytic activity that result in reduced development. Culture with EDTA was able to prevent this increase in glycolysis and, therefore, maintain developmental competence. EDTA was shown to inhibit the activity of the glycolytic enzyme, 3-phosphoglycerate kinase. Additionally, the effect of EDTA on maintaining high rates of embryo development in culture could be mimicked by the addition of Cibacron blue, an inhibitor of 3-phosphoglycerate kinase. The inhibition of 3-phosphoglycerate kinase by EDTA could be overcome by the addition of exogenous magnesium, indicating that the effect of EDTA was to reduce the availability of this co-factor to the glycolytic kinases. Embryos cultured with EDTA had significantly lower levels of intracellular magnesium compared to embryos cultured without EDTA. Therefore, the effect of EDTA appears to be as a chelator of divalent cations such as magnesium, that are required for normal activity of kinases such as 3-phosphoglycerate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号