首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of microtubules (MTs) in vegetative nucleus (VN) and generative cell (GC) transport was investigated by comparing VN and GC distribution with callose plug formation in tobacco pollen grains germinated and grown for 12 h with the plant-specific anti-MT drug oryzalin. The VN-GC complex or VN alone was located close to the tube tip in 100% of controls, but in only 5% of oryzalin-treated tubes. Instead, in 38% of oryzalin tubes, the complex or VN occurred close to the last-formed callose plug; in 40% between or in the middle of plugs; and in 17%, in or near the grain. An aberrant microfilament (MF) cytoskeleton was revealed by expression of a green fluorescent protein-talin fusion protein in living oryzalin-treated tubes. The abnormal MF structures probably resulted from the absence of MTs and impaired - or were a consequence of - VN and GC movement into the tube tip. In oryzalin tubes with several callose plugs, the VN and GC could be in or near the grain, indicating that callose plug synthesis is not dependent on the movement of VN and GC into the tube. VN and GC movement and callose plug formation are apparently independent events, in which the transport of the VN-GC complex must precede callose plug synthesis. Maintenance of the correct developmental program requires an intact MT cytoskeleton, otherwise no fertile pollen tubes are formed.  相似文献   

2.
3.
Summary Fluorescence microscopy was used to visualize microtubules (Mts) and chromatin in an effort to further clarify the relationship between the generative cell (GC) and vegetative nucleus (VN) in pollen tubes of tobacco. Prominent Mt bundles are present in one or more GC extensions that can be finger-like or lamellar in form. While the VN is positioned distal to the GC in most cases, it can also straddle the cell or lie proximal to it. In all cases, however, extensions embrace, penetrate or clasp the VN. GC Mts are reorganized during the formation of the mitotic apparatus, and cell extensions are fully or partially withdrawn. By telophase in many pollen tubes, the VN shifts to a more proximal position and appears to adhere to the region of the GC containing the phragmoplast. Application of oryzalin leads to the disorganization of Mts, changes in cell shape, including the loss or alteration of cell extensions, and separation of the GC and VN in some cases. However, the position and polarity of the VN is maintained in most pollen tubes. The results indicate that GC Mts and cell extensions play a role in the association with the VN. However, the relationship appears to be controlled by other factors as well. Attention should now be directed at potential interactions involving the VN envelope, vegetative plasma membrane, GC plasma membrane and extracellular matrix.Abbreviations GC Generative cell - MGU male germ unit - Mt microtubule - VN vegetative nucleus  相似文献   

4.
The organization of microtubules (MTs) in the generative cell (GC) of germinated pollen and pollen tube in Amaryllis vittata Ait. has been studied with electron microscopy. At the beginning of pollen germination, the GC is long elliptic in shape, and is surrounded by its own membrane and also by that of the vegetative cell (VC) ,both of which appear undulated. In cross section, the GC appears roundish and has many lobes. The MT system of GC is mainly organized in bundles, but single MTs can also be observed. The MT bundles are generally located in the lobes, directly beneath the plasma membrane of the cell. These MT bundles orientate along the longitudinal axis of the cell. They are formed by aggregation of 5–6 MTs at least,more often about 30 MTs. In the bundles the MTs are often linked to each other by "cross-bridge". The single tubules in the eytopiasm distribute randomly in different orientations. When the GC has migrated into the pollen tube after germination ,it becomes elongated and has cytoplasmic extensions both in the anterior and posterior end of the cell. The organization of MTs of the GC in pollen tube is similar to that in the germinated pollen grain,but the number of MTs in a bundle often increases to 50–60. In the bundle the "cross-bridges" between the MTs which always link 3–5 MTs, are still seen clearly. Positional shift between the GC and Vegetative nucleus (VN) may take place during the growth of pollen tube. The physical association between GC and VN may be demonstrated some ultrastructural figures. It may be seen that irregular cytoplasmic extensions in the anterior end of the GC is always enclosed by the VN and the projections of the cytoplasmic extensions lie within enclaves of the VN. There are many MTs sheets in the lobes or extensions in the cytoplasm of the GC. Thus the present study demonstrates that MTs have an important role in maintaining the peculiar shape of the GC and the close association between GC and VN. However, it seems that the MTs are probably also engaged in the movement of the GC during pollen growth.  相似文献   

5.
Low concentration of LatB inhibits not only the actin polymerization, but also induces profound alteration of MT distribution in pollen tubes of Nicotiana tabacum. The short randomly oriented MTs in the apical and subapical regions, became organized as bundles forming subapical rings or basket-like structures, surrounding the apex. Moreover, the depolymerization of AFs in the cortical regions of the apex and subapical region affects the timing of entrance of the vegetative nucleus and generative cell into the pollen tube.  相似文献   

6.
Nicotiana tabacum was used as a pistillate parent and crossed with three self-compatible species, N. rustica, N. repanda and N. trigonophylla, which were previously reported to have pollen tubes unilaterally inhibited by N. tabacum pistil. Temporal and morphological observations revealed distinct differences of pollen tube behavior among these incongruous crosses. Pollen tubes of N. repanda were arrested in stigma and those of N. rustica in the middle of the style. On the other hand, pollen tubes of N. trigonophylla continued growing at a slow rate. Tubes of N. repanda and N. rustica showed morphological abnormalities such as swelling, thick wall, and irregular callose deposition. In addition, tubes of N. rustica often elongated in reverse direction and wound about in the middle of the style. Although the tubes of N. trigonophylla were apparently normal in morphology, they were distributed throughout the transmitting tissue, differing from the self-pollination of N. tabacum in which they were confined to the peripheral region of it. The diversity of pollen tube behavior indicates that physiological causes of incongruity are different among the three crosses. Bud pollination enabled pollen tubes to reach the ovary in all crosses, indicating that the N. tabacum pistil acquired its ability to inhibit foreign pollen tube elongation with its development. When interspecific hybrids between N. tabacum and the other three species were pollinated by parental species, tubes reached the ovary in all crosses, but the elongation rate of tubes slowed down and morphology was abnormal.  相似文献   

7.
Summary The ultrastructure of the cytoskeleton inNicotiana alata pollen tubes grownin vitro has been examined after rapid freeze fixation and freeze substitution (RF-FS). Whereas cytoplasmic microtubules (MTs) and especially microfilaments (MFs) are infrequently observed after conventional chemical fixation, they occur in all samples prepared by RF-FS. Cortical MTs are oriented parallel to the long axis of the pollen tube and usually appear evenly spaced around the circumference of the cell. They are always observed with other components in a structural complex that includes the following: 1. a system of MFs, in which individual elements are aligned along the sides of the MTs and crossbridged to them; 2. a system of cooriented tubular endoplasmic reticulum (ER) lying beneath the MTs, and 3. the plasma membrane (PM) to which the MTs appear to be extensively linked. The cortical cytoskeleton is thus structurally complex, and contains elements such as MFs and ER that must be considered together with the MTs in any attempt to elucidate cytoskeletal function. MTs are also observed within the vegetative cytoplasm either singly or in small groups. Observations reveal that some of these may be closely associated with the envelope of the vegetative nucleus. MTs of the generative cell, in contrast to those of the vegetative cytoplasm, occur tightly clustered in bundles and show extensive cross-bridging. These bundles, especially in the distal tail of the generative cell, are markedly undulated. MFs are observed commonly in the cytoplasm of the vegetative cell. They occur in bundles oriented predominantly parallel to the pollen tube axis. Although proof is not provided, we suggest that they are composed of actin and are responsible for generating the vigorous cytoplasmic streaming characteristic of living pollen tubes.Abbreviations EGTA ethylene glycol bis-(-aminoethyl ether), N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - MF microfilament - MT microtubule - PEG polyethylene glycol - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution  相似文献   

8.
The behavior and role of the microtubule (MT) and actin-myosin components of the cytoskeleton during pollen tube growth in two species of Pinus were studied using anti--tubulin, rhodamine-phalloidin, anti-myosin, and the appropriate inhibitors. Within germinated pollen tubes MTs were arranged obliquely or transversely, but in elongated tubes they were arranged along the tube's long axis. MTs were localized in the tube tip region, excluding the basal part. Altered growth was found in pollen tubes treated with colchicine; the tips of many pollen tubes incubated in the liquid medium were branched and/or rounded, and those in the agar medium were divided into many branches. Both the branching and the rounding were considered to be caused by the disturbance of polarizing growth of the tube due to MT disorganization with colchicine treatment. Actin filaments (F-actin) were found in the major parts of many pollen tubes along their long axis, excluding the tip region. In a few tubes, however, F-actin was distributed throughout the tube. The areas in the pollen tube containing F-actin were filled with abundant cytoplasmic granules, but the areas without F-actin had very few granules. The tube nucleus, which migrated from the grain area into the tube, was closely associated with F-actin. Germination of pollen grains treated with cytochalasin B was little affected, but further tube elongation was inhibited. Myosin was identified on cytoplasmic granules and to a lesser extent on the tube nucleus in the pollen tubes. Several granules were attached to the nuclear envelope. Tube growth was completely inhibited by N-ethylmaleimide treatment. In generative cells that were retained in the pollen grain, both MT and F-actin networks were observed. Myosin was localized on the cytoplasmic granules but not on the cell surface. In conclusion, it was shown that actin-myosin and MTs were present in gymnospermous Pinus pollen tubes and it is suggested that the former contributed to outgrowth of the tubes and the latter contributed to polarized growth. Several differences in the behavior of cytoskeletal elements in generative cells compared to angiosperms were revealed and are discussed.  相似文献   

9.
Pre‐zygotic interspecific incompatibility (II) involves an active inhibition mechanism between the pollen of one species and the pistil of another. As a barrier to fertilization, II effectively prevents hybridization and maintains species identity. Transgenic ablation of the mature transmitting tract (TT) in Nicotiana tabacum resulted in the loss of inhibition of pollen tube growth in Nicotiana obtusifolia (synonym Nicotiana trigonophylla) and Nicotiana repanda. The role of the TT in the II interaction between N. tabacum and N. obtusifolia was characterized by evaluating N. obtusifolia pollen tube growth in normal and TT‐ablated N. tabacum styles at various post‐pollination times and developmental stages. The II activity of the TT slowed and then arrested N. obtusifolia pollen tube growth, and was developmentally synchronized. We hypothesize that proteins produced by the mature TT and secreted into the extracellular matrix inhibit interspecific pollen tubes. When extracts from the mature TT of N. tabacum were injected into the TT‐ablated style prior to pollination, the growth of incompatible pollen tubes of N. obtusifolia and N. repanda was inhibited. The class III pistil‐specific extensin‐like protein (PELPIII) was consistently associated with specific inhibition of pollen tubes, and its requirement for II was confirmed through use of plants with antisense suppression of PELPIII. Inhibition of N. obtusifolia and N. repanda pollen tube growth required accumulation of PELPIII in the TT of N. tabacum, supporting PELPIII function in pre‐zygotic II.  相似文献   

10.
A modified technique, FITC-tubulin immunofluorescence and DAPI localization to demonstrate simultaneously both the generative cell (GC) and the vegetative nucleus (VN) in the pollen tube under ultra-violet excitation, was developed sucessfully. During the germination of the pollen tube of Amaryllis vittata Ait. the GC and the VN, either being the first one, entered the tube within the first 1—2 h from the pollen grain. However, before the time of GC division, the VN was always positioned distally near the tip of the tube. In case when the GC entered the tube first, then the VN must have a positional shift in order to pass over the GC. The detail processes of positional shift between the GC and the VN were observed. Three basic processes were demonstrated: 1. The anterior end of the VN first reached the vicinity of the posterior attenuated extension of the GC about 2 h following germination forming a temporal physical association. Sometimes their both ends could be inserted into one another for certain extent. 2. The whole VN moved forward and contacted in parallel with the GC until they became twisted together and 3. The VN passed over the GC and greatly elongted lengthwise. Its posterior part became inserted into the anterior end of the GC. The behavior of positional shift between the VN and the GC in the pollen tube seems to be an adjustment of their diameters to fit the narrow tube. A conclusion may be drawn that the rate of movement between the VN and the GC was apparently different during the passage through the tube. Such difference may presumably be accompanied by the independent motive mechanism and structural difference between the VN and GC themselves, which provide their motive force for movement in the tube.  相似文献   

11.
Bra r 1 encodes a novel Ca2+-binding protein specifically expressed in pollen and is localized in cytoplasm of pollen and pollen tubes. In this study, we demonstrated the expression of green fluorescent protein (GFP) with a nuclear localization signal under the control of Bra r 1 promoter in tobacco pollen. A fluorescent signal was detected in the vegetative nucleus (VN) but not in generative and sperm cell nuclei, indicating pollen vegetative cell-specific expression of Bra r 1. The fluorescent signal in elongating pollen tubes was stronger than that in mature pollen, indicating that the expression of Bra r 1 was more activated during pollen tube growth. This result suggests that Bra r 1 protein might be necessary for pollen tube growth. The pattern of green fluorescence in the VN revealed that VN chromatin is dispersed during the mid-bicellular pollen stage and condensed at the mature stage. This suggests that the level of chromatin condensation might be linked with gene expression in pollen vegetative cells. We also found that the expression of GFP and its targeting of the VN have no detrimental effect on pollen maturation and pollen tube growth. Expression of GFP in pollen thus makes rapid non-destructive monitoring of transgenic pollen and pollen tubes possible. The GFP which moved into the VN was found to be a convenient tool for observation of the VN and could be useful as a selectable marker of transgenic pollen for the analysis of pollen-specific genes. Received: 6 December 2000 / Revision accepted: 20 March 2001  相似文献   

12.
Summary In view of the importance of the lily pollen tube as an experimental model and the improvements in ultrastructural detail that can now be attained by the use of rapid freeze fixation and freeze substitution (RF-FS), we have reexamined the ultrastructure of these cells in material prepared by RF-FS. Several previously unreported details have been revealed: (1) the cytoplasm is organized into axial slow and fast lanes, each with a distinct structure; (2) long, straight microtubule (MT) and microfilament (MF) bundles occur in the cytoplasm of the fast lanes and are coaligned with every organelle present; (3) the cortical cytoplasm contains complexes of coaligned MTs, MFs, and endoplasmic reticulum (ER); (4) the cortical ER is arranged in a tight hexagonal pattern and individual elements are closely appressed to the plasma membrane with no space between; (5) mitochondria and ER extend into the extreme apex along the flanks of the pollen tube, and vesicles and ER are packed into an inverted cone-shaped area at the center of the apex; (6) MF bundles in the tip region are fewer, finer, and in random orientation in comparison to those of the fast lanes; (7) the generative cell (GC) cell wall complex contains patches of plasmodesmata; (8) The GC cytoplasm contains groups of spiny vesicles that are closely associated with and seem to be fusing with or pinching off from mitochondria, and (9) the vegetative nucleus (VN) contains internal MT-like structures as well as numerous cytoplasmic MTs associated with its membrane and also located between the VN and GC.Abbrevations CF chemical fixation - ER endoplasmic reticulum - GC generative cell - MF microfilament - MT microtubule - PD plasmodesmata - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution - VN vegetative nucleus  相似文献   

13.
Summary The organization and distribution of microfilaments (MFs) in the preprophase bands (PPBs) of tobacco (Nicotiana tabacum L. var. Maryland Mammoth) root tip cells were studied with high pressure freezing and freeze-substitution methods. MFs were present predominantly as single filaments interspersed among microtubules (MTs) throughout the PPB. Some MFs appeared to be associated with MTs, whereas others were not. This is the first time that MFs have been demonstrated in the PPB at the electron microscope level.  相似文献   

14.
Summary— The distribution of microtubules was investigated in Nicotiana tabacum pollen tubes at different stages of tube growth by immunofluorescence microscopy. Using specific antibodies, the presence of microtubules consisting of different tubulin isoforms was tested. α-, β- and tyrosinated α-tubulin were present within the tube, whereas the acetylated form was lacking. The presence of tubulin subunits in pollen tube extracts was also investigated by immunoblotting analyses. The use of a confocal laser scanning microscope integrated with computer-assisted imaging, allowed a detailed visualization of the microtubule distribution and organization. Cytoplasmic microtubules organized as short bundles with various orientations were detected at the apex of long tubes.  相似文献   

15.
16.
The vegetative nucleus (VN) of Nicotiana tabacum L. has been qualitatively and quantitatively studied in fresh, hydrated, and activated pollen. Techniques included the use of optical sectioning by confocal scanning laser microscopy to obtain volume and surface area measurements, and stereoscopic pairs; and freeze-etch electron microscopy to estimate the frequency of nuclear pores per m2 in the vegetative nucleus. Several morphological changes were observed to occur in pollen grain nuclei during the early processes of tube growth. In freshly dehisced pollen grain, the vegetative and generative nuclei were side by side, but following hydration and activation of the grain, the elongated generative nucleus became partially surrounded by the vegetative nucleus. It was found that during hydration, the surface area of the vegetative nucleus increased and there was a decrease in the frequency of nuclear pores. The calculated total number of pores remained similar. After activation and pollen-tube growth, the vegetative nucleus retained the same surface area as in the hydrated state but the frequency of nuclear pores decreased; therefore, the calculated total number of pores was significantly lowered. When considered alongside complementary biochemical data, these morphological results indicate that RNA production in the vegetative nucleus decreases following germination.Abbreviations VN vegetative nucleus (nuclei) - GN generativenucleus - GC generative cell - CSLM confocal scanning laser microscope We acknowledge research support by the Biotechnology Action Programm of the Commission of European Communities, and CNR for the fellowship awarded to Dr. Wagner. We would also like to thank Mrs. C. Faleri for the expert technical help.  相似文献   

17.
对花粉管中的微丝和微管研究的几个问题的进展进行了综述, 包括微丝和微管在花粉管中的分布;微丝和微管在花粉管胞质流动、细胞器运动以及花粉管生长中的作用等几个方面。并对今后这些方面研究的重要问题进行了论述。  相似文献   

18.
For the first time in pollen tubes, both cytoplasmic and nuclear calcium have been imaged to allow comparative analysis of calcium dynamics in these two compartments with high spatial and temporal dynamics. An improved cameleon (YC2.1) calcium reporter was expressed cytoplasmically in both Lilium longiflorum and Nicotiana tabacum pollen tubes and the periodically fluctuating tip-focused calcium gradient typical of normal growth was recorded by ratio image analysis. The nucleoplasmin targeting sequence was then used to localise expressed YC2.1 to the vegetative nucleus of N. tabacum pollen tubes to permit imaging of nuclear location, shape and calcium dynamics. Nuclear-targeted YC2.1 (NupYC2.1) showed an absence of any obvious regular fluctuations in nuclear calcium levels during tube extension in vitro with typical growth rate fluctuation. The use of targeted cameleons to study subcellular calcium dynamics in pollen tubes is discussed.  相似文献   

19.
Nicotiana tabacum shows unilateral pollen-pistil incongruity with N. rustica. If N. tabacum is pollinated with N. rustica, growth of the pollen tube is arrested in the middle of the style, and abundant callose deposition, tube swelling and tube winding are observed. An attempt was made to clarify the genomic factors responsible for this pollen-pistil incongruity. N. tabacum was pollinated with N. paniculata or N. undulata, progenitors of amphidiploid N. rustica. When pollinated with N. undulata, growth of the pollen tube was arrested in the middle of the style and showed abnormal morphology similar to that with N. rustica, but when pollinated with N. paniculata the pollen tube reached near the base of the style and was almost normal in appearance. These observations suggest that the factors responsible for the pollen tube abnormality of N. rustica are derived from the N. undulata genome.We also used N. sylvestris, N. glutinosa and N. otophora as pistilar parents and N. rustica or its progenitors as pollen parents to examine the genomic factors of the pistilate parents. The pollen tube features of these three species in the pistils of N. sylvestris were similar to those in the pistil of N. tabacum. Received: 25 October 1999 / Revision accepted: 2 February 2000  相似文献   

20.
The Nicotiana tabacum transmitting tissue is a highly specialized file of metabolically active cells that is the pathway for pollen tubes from the stigma to the ovules where fertilization occurs. It is thought to be essential to pollen tube growth because of the nutrients and guidance it provides to the pollen tubes. It also regulates gametophytic self-incompatibility in the style. To test the function of the transmitting tissue in pollen tube growth and to determine its role in regulating prezygotic interspecific incompatibility, genetic ablation was used to eliminate the mature transmitting tissue, producing a hollow style. Despite the absence of the mature transmitting tissue and greatly reduced transmitting-tissue-specific gene expression, self-pollen tubes had growth to the end of the style. Pollen tubes grew at a slower rate in the transmitting-tissue-ablated line during the first 24 h post-pollination. However, pollen tubes grew to a similar length 40 h post-pollination with and without a transmitting tissue. Ablation of the N. tabacum transmitting tissue significantly altered interspecific pollen tube growth. These results implicate the N. tabacum transmitting tissue in facilitating or inhibiting interspecific pollen tube growth in a species-dependent manner and in controlling prezygotic reproductive barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号