首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline phosphatase activity (AP) of the adrenal cortex of rats were determined under the effect of ethinyl estradiol (EE) and/or norethisterone acetate (NA), the two components of the contraceptive pill gyn-anovlar (Schering AG Berlin). A pathological study was also carried out to examine the effects of EE and NA on other tissues mainly the liver, lungs, spleen and ovaries. EE in a dose of 10 micrograms/day for 2 weeks caused a significant increase in the weight of the adrenal but no significant increase in the AP/g cortical tissue. The 25 and 50 micrograms doses for the same period caused a significant increase in both adrenal weight and AP. When treatment was prolonged to 6 weeks no effect on adrenal weight or AP was detected. The same finding was obtained with NA in a dose of 7 mg/rat/day for 2 weeks. The 14 mg dose of NA for the same period caused a significant increase in adrenal weight but no effect on AP. The 21 mg dose caused a significant increase in adrenal weight accompanied by significant decrease in AP/g cortical tissue. Treatment with NA for 6 weeks caused a rise in adrenal weight and AP with the 7 mg dose, then a decline in AP with the 14 mg dose, and a decline in both adrenal weight and AP with the 21 mg dose. As regards the effects of EE and NA on other tissues, EE was found to have a powerful stimulatory effect on the reticuloendothelial system (RES) as well as toxic effects on the liver. NA did not produce such lesions except for the large doses and prolonged periods of treatment. In addition NA produced cholestasis in the liver associated with staining of the liver cells with bile. Combination of EE and NA in the form of gyn-anovlar produced more powerful stimulation of RES and decreased the toxic manifestations of either component. As regards the ovaries, administration of 50 micrograms EE for 6 weeks produced profound hyperplasia of the granulosa cells of the Graafian follicles and inhibited ovulation, however, NA did not inhibit ovulation. With gyn-anovlar, the effect of EE on the ovaries seemed to predominate and ovulation was inhibited.  相似文献   

2.
《Free radical research》2013,47(1-5):285-291
To investigate the role of carcinogenic chemicals as a possible cause for oxidative damage, rats were treated with jV-nitrosodimethylamine (NDMA) and various measures of lipid peroxidation were followed. As an indication of enhanced peroxidative processes in vivo NMDA treatment produced rapidly an increase in the rate of ethane exhalation. A single i.p. or p.o. injection of lOmg/kg b.w. elevated ethane exhalation by 13-14 fold; a single dose of 0.5mg/kg of NDMA (the smallest dose tested) increased 5-fold the amount of ethane exhaled. Similarly, lipid peroxidation in the liver of NDMA-treated rats (measured by diene conjugation, chemiluminescence, the production of fluorescent and TBA-reactive material) was found to be increased rapidly showing a peak already 20min after dosing. Simultaneously, NDMA-treatment slightly decreased antioxidant enzyme activities and GSH contents in the liver. In isolated rat hepatocytes the lucigenin-dependent chemiluminescence, as well as H,02 release, were increased by micromolar concentrations of NDMA. Finally, it was shown that the rate of NADPH-stimulated ethane production by hepatic microsomes, prepared from untreated rats, was increased in the presence of NDMA. Thus, our results demonstrate that the alkylating NDMA can induce oxidative stress in rodents. Whether the same is true for other classes of carcinogens and processes known to affect tumor initiation/progression is presently under investigation.  相似文献   

3.
Between-set rest intervals (RIs) may influence accumulated fatigue, work volume, and therefore oxygen uptake (VO2) and energy expenditure (EE) during resistance training. The study investigated the effects of different RIs on VO2 and EE in resistance exercises performed with multiple sets and recruiting large and small-muscle mass. Ten healthy men performed 4 randomized protocols (5 sets of 10 repetitions with 15 repetition maximum workloads in either horizontal leg press [LP] or chest fly [CF] with an RI of 1 and 3 minutes). The VO2 was measured at rest, within sets, and during 90-minute postexercise recovery (excess postexercise oxygen consumption [EPOC]). The EE was estimated from VO2net (total VO2 - rest VO2). The VO2 increased in all protocols, being higher within the exercises and during EPOC in the LP than in the CF regardless of the RI. The 1-minute RI induced higher accumulated VO2 during LP (p < 0.05) but not during CF. The EPOC lasted approximately 40 minutes after LP1, LP3, and CF1, being longer than after CF3 (20 minutes, p < 0.05). Total EE was mainly influenced by muscle mass (p < 0.001) (LP3 = 91.1 ± 13.5 kcal ~ LP1 = 88.7 ± 18.4 kcal > CF1 = 50.3 ± 14.4 kcal ~ CF3 = 54.1 ± 12.0 kcal). In conclusion, total VO2 was always higher in LP than in CF. Shortening RI enhanced the accumulated fatigue throughout sets only in LP and increased VO2 in the initial few minutes of EPOC, whereas it did not influence total VO2 and EE in both exercises. Therefore, (a) the role of RI in preventing early fatigue seems to be more important when large-muscle groups are recruited; (b) resistance exercises recruiting large-muscle mass induce higher EE because of a greater EPOC magnitude.  相似文献   

4.
The level of serum beta-glucuronidase increases in various pathological conditions, including liver disorders. The aim of this investigation was to study the changes in liver lysosomal membrane stability during experimentally induced hepatic fibrosis that may result in the elevation of serum beta-glucuronidase. Liver injury was induced by intraperitoneal injections of N-nitrosodimethylamine (NDMA) in adult male albino rats over 3 weeks. The progression of fibrosis was evaluated histopathologically as well as by monitoring liver collagen content. Lipid peroxides and beta-glucuronidase levels were measured in the liver homogenate and subcellular fractions on days 0, 7, 14, and 21 after the start of NDMA administration. Serum beta-glucuronidase levels were also determined. A significant increase was observed in beta-glucuronidase levels in the serum, liver homogenate, and subcellular fractions, but not in the nuclear fraction on days 7, 14, and 21 after the start of NDMA administration. Lipid peroxides also increased in the liver homogenate and the lysosomal fraction. The measurement of lysosomal membrane stability revealed a maximum lysosomal fragility on day 21 during NDMA-induced fibrosis. In vitro studies showed that NDMA has no significant effect on liver lysosomal membrane permeability. The results of this investigation demonstrated that lysosomal fragility increases during NDMA-induced hepatic fibrosis, which could be attributed to increased lipid peroxidation of lysosomal membrane. In this study, we also elucidated the mechanism of increased beta-glucuronidase and other lysosomal glycohydrolases in the serum during hepatic fibrosis.  相似文献   

5.
Exposure of rats to the hepatocarcinogen N-nitrosodimethylamine (NDMA) (0.2-2.64 ppm in the drinking water) for up to 180 days resulted in rapid accumulation of N7- and O6-methylguanine in liver and white blood cell DNA, maximum adduct levels being reached within 1-7 days, depending on the dose. The levels of both adducts remained constant up to treatment day 28, subsequently declining slowly to about 40% of maximal levels for the liver and 60% for white blood cells by day 180. In order to elucidate the role of DNA replication in NDMA hepatocarcinogenesis, changes in liver cell labeling index (LI) were also measured on treatment days 21, 120 and 180. Although the time- and dose-dependence of the observed effects were complex, a clear trend towards increased rates of hepatocyte LI, as indicated by BrdU incorporation, with increasing NDMA doses was evident, particularly above 1 ppm, a concentration above which NDMA hepatocarcinogenicity is known to increase sharply. In contrast, no increase in Kupffer cell DNA replication was found at any of the doses employed, in accordance with the low susceptibility of these cells to NDMA-induced carcinogenesis. No significant increase in the occurrence of necrotic or apoptotic cells was noted under the treatment conditions employed. These results suggest that, in addition to the accumulation of DNA damage, alterations in hepatocyte DNA replication during the chronic NDMA exposure may influence the dose-dependence of its carcinogenic efficacy.  相似文献   

6.
Hyaluronic acid (HA) plays prominent role in the pathogenesis of liver fibrosis. The mechanism of increased serum and liver HA during hepatic fibrosis was studied in rats. Liver injury was induced by intraperitoneal injections of N-nitrosodimethylamine (NDMA) for 7 consecutive days. A group of animals were sacrificed on everyday during injection and also on days 14 and 21 after the start of NDMA administration. The alpha-smooth muscle actin (alpha-SMA) was stained as a marker for activated stellate cells. Liver HA was studied by histochemical methods and serum HA was monitored by HA binding protein assay. CD44 was stained immunohistochemically. After the start of NDMA administration, necrosis was initiated on day 3 and massive necrosis was observed on days 5 and 7. Fibrosis was developed on day 14 and early cirrhosis was present on day 21. Staining of alpha-SMA demonstrated activated stellate cells from day 3 onwards. Serum HA peaked on day 7 and reduced afterwards. Serial liver sections stained for HA revealed excessive accumulation of HA during NDMA administration. On days 14 and 21, alpha-SMA and HA staining was remarkable in fibrotic and cirrhotic areas. CD44 staining was negative except during necrosis. It is concluded that the early elevation of serum HA is due to the increased synthesis and simultaneous release from the necrotic liver. In latter stages the increase of both serum and liver HA is contributed by the increased synthesis by the activated stellate cells and reduced clearance by the impaired sinusoidal endothelial cells.  相似文献   

7.
Liver dysfunction was produced in the rat by injecting CCl4 subcutaneously in the back twice a week, and the effects of L-carnosine (CAR) on the resulting liver injury were examined. When CCl4 was administered to 6-week-old rats for 9 weeks, GOT and GPT values increased, but these changes were suppressed in the group concomitantly treated with CAR, indicating a protective effect of the agent on liver function. No such preventive effects of CAR was observed in 40-week-old rats, but when the CCl4 administration was discontinued after 4 weeks, GOT and GPT decreased to normal levels within 1 week of discontinuation, indicating a therapeutic effect of CAR on hepatopathy. Based on these findings, we determined the cortisone beta-reductase activity in the rat liver. The increase in this enzyme activity in the group treated with CAR indicated acceleration of cortisone metabolism. Changes of blood cortisol level and cerebral and blood noradrenaline (NA) levels were studied by exposing 6-week-old rats to electric shocks at 30 V. Cortisol released into the circulation after the stress was quickly metabolized in the CAR group and the blood level normalized after 3 hours. Following the release of NA from the brain into the circulation, the NA concentration rapidly returned to the normal level both in the brain and the blood. CAR enhanced the liver function and accelerated the metabolism of stress-related substances also in aged animals. CAR, moreover, restored the RNA contents of the mouse spleen and the immunological abilities represented by PFC reaction, which are reduced by stresses such as forced immersion, fasting, and administration of MMC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The processes of hepatocyte multinucleation were studied in rats exposed to N-nitrosodimethylamine (NDMA). Using the immunohistochemical reaction to γ-tubulin, it was established that the number of cells containing three or more centrosomes increased 48 h after the NDMA injection. The formation of additional centrosomes in hepatocytes was shown to be based on the oxidative stress induced by NDMA metabolism with the participation of the cytochrome P450 superfamily. The administration of NDMA led to a sharp increase in the cytochrome P450 content in liver, especially 24 and 48 h (3.3 and 2.8 times, respectively) after the NDMA injection. The immunohistochemical reaction for cytochrome P4502E1 revealed an intensive staining of the cytoplasm of centrilobular hepatocytes 24 and 48 h after the NDMA action. In the same time period, a 1.1-2.0-fold increase occurs in the concentration of malonic dialdehyde (MDA) (a derivative of lipid peroxidation) and a 1.1-1.3-fold decrease in catalase activity (an enzyme of the cell antioxidative system). At a later time (72–120 h) after the NDMA action, the number of cells with three or more centrosomes, the intensity of cell cytoplasmic staining for cytochrome P450 2E1, and the concentrations of P450 and MDA in the liver decreased, whereas catalase activity increased. After 48 h of NDMA treatment, the incorporation of binuclear hepatocytes with various 3H-thymidines into nuclei occured, which indicates asynchronous DNA synthesis. The immunohistochemical reaction for pKi-67, nuclear protein that is a marker of cell proliferation, has established that the asynchronicity of nuclear proliferative activity in binuclear cells is not only characteristic of the S phase, but also of other cell cycle phases, including G1, G2, and M. Thus, the main mechanisms of hepatocyte multinucleation under the influence of NDMA are as follows: (1) increased hyperamplification of centrosomes as a consequence of oxidative stress and (2) asynchronous DNA synthesis in nuclei of binuclear hepatocytes with subsequent asynchronous acytokinetic mitosis.  相似文献   

9.
The influence of development and ethinylestradiol (EE) on apolipoprotein (apo) A-I, A-II, and E mRNA in rat liver and intestine was studied by dot blot hybridization and Northern blot analysis. ApoA-I mRNA levels were maximal in the perinatal period and declined after day 15. An opposite trend was noted for the apoA-II mRNA levels, whereas apoE mRNA remained fairly constant. Liver apoA-I mRNA levels increased after ovariectomy (OVX). A further rise was observed when EE was given at 2000 micrograms/day. When the influence of OVX and EE was controlled for food intake by pair-feeding, OVX still increased hepatic apoA-I mRNA. The rise in liver apoA-I mRNA after EE, however, was no longer significant. Under the same conditions OVX slightly increased intestinal apoA-I mRNA. EE (2000 micrograms/day) decreased intestinal apoA-I mRNA to 80% of the pair-fed controls. Liver apoA-II mRNA levels did not change after OVX when the animals were fed ad libitum, but decreased slightly when the rats were pair-fed. EE caused a dose-dependent decrease in liver apoA-II mRNA, irrespective of food intake. None of these treatments caused any change in liver apoE mRNA levels. Serum apoA-I levels increased upon OVX, while serum apoE did not change. EE provoked a dose-dependent decrease of both apolipoproteins in serum. In conclusion: 1) Changes in food intake play an important role in the in vivo effects of estrogens on apolipoprotein mRNA levels. 2) The stimulatory effect of OVX on hepatic apoA-I mRNA as well as the inhibitory effect of EE on hepatic apoA-II mRNA are independent of food intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of exogenous noradrenaline (NA) (1.6 mg.kg(-1) i.p., 35 min prior sacrifice) on the activity of antioxidant enzymes (AOE) copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as lipid peroxides (LP) concentration were studied in the rat interscapular brown adipose tissue (IBAT) and heart of saline (controls) and N(omega)-nitro-L-arginine methyl ester (L-NAME) treated rats (10 mg.kg(-1), i.p., during 3 days and 20 min before NA). NA differently affects both AOE activities and LP production in the IBAT and heart. Thus, NA inhibited the activity of all IBAT AOE and LP production while in the heart it markedly increased CAT activity only, but had no effect on any of SODs activities and LP concentration. L-NAME, a nitric oxide synthase blocker, completely abolished the NA-induced inhibition of the IBAT AOE and LP production, whereas in the heart it was without effect. In conclusion, these results indicate that both NA and L-NAME effects on AOE activity and LP production are tissue specific and also suggest that nitric oxide mediates the NA-induced inhibition of AOE activity and LP production in the IBAT only.  相似文献   

11.
In perfused rat liver hepatic nerve stimulation (10 Hz, 2 ms) (NS) increased glucose and lactate output, decreased flow and was accompanied by an overflow of noradrenaline into the hepatic vein. These effects were dependent on extracellular and partly on intracellular calcium. Infusion of noradrenaline (1 microM) (NA) elicited similar effects. 1) Calmidazolium at 1, 2 and 5 microM caused an increase in basal glucose output and a decrease and intrahepatic redistribution of flow after a lag of 30, 20 and 5 min, respectively. 2) After 5 min of 1 microM calmidazolium, i.e. before it altered basal metabolism and flow, the actions of NS and NA remained unaltered. 3) After 40 min of 1 microM calmidazolium, i.e. after it had just begun to alter basal metabolism and flow, NS caused a decrease in glucose and lactate output rather than an increase and the metabolic effects of NA were strongly reduced whereas the hemodynamic changes of both stimuli were not altered. 4) TMB-8 at 25, 50 and 100 microM caused a transient increase in lactate output and a decrease and intrahepatic redistribution of flow after a lag of 5 min only at 100 microM concentrations. 5) The effects of NS were inhibited already by 25 microM TMB-8 which reduced NA release whereas the effects of NA were not influenced. Thus, calmidazolium and TMB-8 did not act as a calmodulin and intracellular calcium antagonist, respectively, but had unspecific "side effects" in the complex system of the perfused liver. The antagonists cannot be used to study the role of intracellular calcium in intact organs.  相似文献   

12.
The root extract of Operculina turpethum (OTE) has been used as an anti-inflammatory, purgative, and hepato-protective agent. N-Nitrosodimethylamine (NDMA) is a potent hepatotoxin that induces fibrosis of the liver. In the present study, we examined the therapeutic effects of OTE root extract against NDMA-induced hepatotoxicity and clastogenicity in rats. Hepatic fibrosis was induced in adult male albino rats through serial intraperitoneal administrations of NDMA at a concentration of 10 mg/kg body weight on three consecutive days of each week over a period of three weeks. A group of rats received OTE orally in doses of 75, 150 and 200 mg/kg body weight at 5 h after the administration of NDMA. The controls and treated animals were sacrificed on days-7, 14 and 21 after the start of the administration of NDMA. The progression of hepatic fibrosis as well as the amelioration effect of OTE was evaluated through histopathologically as well as by immunohistochemical staining for the activation of hepatic stellate cells. Alterations in serum and liver biochemical parameters and LDH isoenzymes were also studied. Serial administration of NDMA resulted in well formed fibrosis in the liver and induction of micronuclei in the bone marrow cells. Staining of α-SMA demonstrated activated stellate cells from day-7 onwards which was dramatically increased on day-21. An elevation of micronuclei count, liver function enzymes, serum hydroxyproline levels and LDH isoenzymes 4 and 5 were also observed. All these changes were remarkably reduced in OTE administered animals and fibrogenesis was completely absent. Our results suggest that OTE has hepatoprotective and anti-clastogenic effects against NDMA-induced hepatic fibrosis. Therefore OTE may be used as a hepatoprotective agent against various liver diseases including toxic liver injury.  相似文献   

13.
Leucocytes adsorb by two orders of magnitude more labeled nicotinic acid ([14C]Na) than erythrocytes (as calculated on a per cell basis). The dynamics of binding of labeled vitamin by leucocytes is biphasic with the formation of predominantly [14C]nicotinic coenzymes already at very short time intervals after their injection to rats. Simultaneous injections of thiamine, riboflavin, lipoate and pantotenate increased the level of total labeled nicotinate metabolites in the blood and leucocytes 2.1- and 4.1-fold, respectively. The metabolism of subcutaneously injected [14C]NA was predominantly localized in the digestive system with a markedly pronounced two-phase dynamics of changes of the level of total labeled metabolites in the liver and small intestine concomitant with their secretion together with digestive juices. The functionally coupled vitamins injected simultaneously sharply increased the incorporation of the total label into liver tissues (up to 45% of the injected dose against 33% in the control) and the increase in the level of [14C]pyridine nucleotides. Similar effects were observed upon accumulation of labeled metabolites of [14C]NA in small intestine membranes. The increase in the maximal accumulation of nicotinate under effects of other group B vitamins in brain, heart and spleen tissues correlated with the dynamics, of their accumulation in the blood. In the postmaximal period in cardiac muscle and brain tissues, the second increase in the [14C]NA binding correlated with the dynamics of its accumulation in the digestive system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Nicotinic acid (NA) has been used as a lipid drug for five decades. The lipid-lowering effects of NA are attributed to its ability to suppress lipolysis in adipocytes and lower plasma FFA levels. However, plasma FFA levels often rebound during NA treatment, offsetting some of the lipid-lowering effects of NA and/or causing insulin resistance, but the underlying mechanisms are unclear. The present study was designed to determine whether a prolonged, continuous NA infusion in rats produces a FFA rebound and/or insulin resistance. NA infusion rapidly lowered plasma FFA levels (>60%, P < 0.01), and this effect was maintained for ≥5 h. However, when this infusion was extended to 24 h, plasma FFA levels rebounded to the levels of saline-infused control rats. This was not due to a downregulation of NA action, because when the NA infusion was stopped, plasma FFA levels rapidly increased more than twofold (P < 0.01), indicating that basal lipolysis was increased. Microarray analysis revealed many changes in gene expression in adipose tissue, which would contribute to the increase in basal lipolysis. In particular, phosphodiesterase-3B gene expression decreased significantly, which would increase cAMP levels and thus lipolysis. Hyperinsulinemic glucose clamps showed that insulin's action on glucose metabolism was improved during 24-h NA infusion but became impaired with increased plasma FFA levels after cessation of NA infusion. In conclusion, a 24-h continuous NA infusion in rats resulted in an FFA rebound, which appeared to be due to altered gene expression and increased basal lipolysis in adipose tissue. In addition, our data support a previous suggestion that insulin resistance develops as a result of FFA rebound during NA treatment. Thus, the present study provides an animal model and potential molecular mechanisms of FFA rebound and insulin resistance, observed in clinical studies with chronic NA treatment.  相似文献   

15.
To investigate the role of ethanol in chemically-induced carcinogenesis, we exposed Wistar rats to ethanol, either as an acute dose or for prolonged periods in a liquid diet and looked for effects on endogenously and exogenously derived DNA adducts. Changes in the cytochrome P450 protein (CYP 2E1) and its catalytic demethylase activity were also followed in order to provide a sequence of relatively well understood changes that are associated with free radical production and, therefore, potentially capable of affecting DNA.The exocyclic DNA adducts, ethenodeoxyadenosine (varepsilondA) and ethenodeoxycytidine (varepsilondC), known to arise from oxidative stress and lipid peroxidation (LPO) sources, were detected in the liver DNA of Wistar rats at background concentrations of 4-6 (varepsilondA) and 25-35 (varepsilondC) adducts per 10(9) parent bases. When rats were given either an acute dose of ethanol (5g/kg, i.g.) or exposed for 1 week to ethanol in a liquid diet (5%, w/v), etheno adduct levels were increased approximately 2-fold and this was statistically significant for varepsilondC (P<0.05 and P<0.02, respectively) for the two separate treatments.In N-nitrosodimethylamine (NDMA)-treated rats, acute ethanol treatment significantly increased the level of O(6)-methylguanine (O(6)-MeG) in hepatic DNA and this was paralleled by a decrease in O(6)-alkylguanine DNA alkyltransferase (ATase) activity; immunohistochemistry confirmed this increase of O(6)-MeG in both hepatic and renal nuclei. When rats were given ethanol in the diet and treated with NDMA, O(6)-MeG levels in hepatic DNA increased at 1 week which coincided with the peak of CYP 2E1-dependent NDMA-demethylase activity. Single cell gel electrophoresis of liver cells showed that after 1 week of exposure to ethanol, there was a small but significant increase in the frequency of DNA strand breaks induced by NDMA (P<0.05); after 4 weeks the increase was 1.4-fold (P<0.01).Our results indicate that exposures to ethanol, which resulted in blood ethanol concentrations similar to those seen in chronic alcoholics and increased levels of expression of the CYP 2E1 protein can exacerbate the DNA damaging effects of endogenous and exogenous alkylating agents. These observations provide indications of possible mechanisms for the carcinogenic or co-carcinogenic action of ethanol.  相似文献   

16.
DNA damage and repair in kidney and liver of mouse fetuses exposed to selected doses of N-nitrosodimethylamine (NDMA) (CAS No. 62.75.9) were studied using the alkaline elution technique. CD1 female mice (15 days pregnant) were treated i.p. with 2 and 10 mg/kg b.w. of NDMA; a slight increase in DNA damage was observed in their fetuses compared to untreated controls. A 2-fold higher extent of DNA damage was induced when mice were treated by intrafetal injections of a rat S9 activating fraction (S9) immediately before exposure to the same dose of NDMA by transplacental means. The DNA-strand breaks disappeared as a function of time in animals treated with NDMA alone. In contrast, a significant persistence of DNA damage was detected in the liver and lung of fetuses which were treated with S9 and NDMA in sequence. These experiments demonstrate the metabolic immaturity of unborn mice as far as the carcinogenic activation of NDMA is concerned and show the high susceptibility of fetal tissues to DNA-damaging agents. The alkaline elution applied in vivo by the transplacental route combined with the intrafetal injection of an exogenous activating microsomal fraction allow to extend our knowledge on the interaction of metabolism-dependent chemicals with fetal tissues.  相似文献   

17.
Several studies have recently shown that metallothionein (MT), a protein characterized by a high thiol content and that binds Zn2+ and Cu+, might be involved in the protection against oxidative stress and can act as a free radical scavenger. Oxidative stresses, such as irradiation, increase lipid peroxidation (LP) and subsequent tissue damage through free radical production. The induction of hepatic MT synthesis by gamma-irradiation (20 Gy) at 8, 24, 30 and 48 hrs. post-irradiation in two different age groups of Sprague-Dawley rats (39-40 and 48-49 days old) was studied. LP measured by the thiobarbituric acid reactive substances (TBARS) assay and Cu and Zn levels in liver have also been determined. In the younger group, the gamma-irradiation induced hepatic MT synthesis and increased LP that peaked 24 hrs. after irradiation. During the first 30 hrs. post-irradiation, a positive and statistically significant correlation between hepatic MT content and LP level in liver was found. In the older group, liver MT synthesis was only increased 1.7-fold and LP levels were not altered at 24 hrs. post-irradiation compared with sham-irradiated rats.Therefore it appears that LP is not necessary for induction of MT synthesis by gamma-irradiation.  相似文献   

18.
19.
The metabolic role of neurally released noradrenaline (NA) was studied in the liver of anesthetized dogs. Sustained stimulation with various frequencies was directly applied on the anterior plexus of hepatic nerves. Stimulation-induced changes in plasma concentrations of endogenous catecholamines in hepatic venous blood were determined in correlation with concomitant changes in those of glucose (GL). Mean basal values for hepatic venous NA, adrenaline, dopamine, and GL were 0.062, 0.022, 0.032 ng/mL, and 97.9 mg%, respectively. Among these catecholamines, NA was the only one being released significantly during stimulation. While hepatic venous NA increased rapidly during stimulation, being maximum within 3 min, hepatic venous GL increased gradually, reaching a maximum value 5 min after the onset of stimulation. A highly significant correlation (r = 0.90, P less than 0.001) was found between changes in hepatic venous NA and GL concentrations observed during stimulation at various frequencies (2-16 Hz). However, hepatic vasoconstricting responses to stimulation were not correlated with increased hepatic venous GL. An alpha-blockade with phentolamine (2 mg/kg, iv) resulted in diminished release of GL by approximately 50% (P less than 0.05) and reduced hepatic arterial vasoconstriction by approximately 47% (P less than 0.01) upon stimulation (8 Hz, 5 min), even though NA release was markedly enhanced. We conclude that in the dog, NA is the sole catecholamine released within the liver in response to direct hepatic nerve stimulation, and NA thus released mediates the hepatic glycogenolysis via alpha-adrenoceptors.  相似文献   

20.
Connective tissue growth factor (CTGF) is involved in inflammation, pathogenesis and progression of liver fibrosis. Matrix metalloproteinase‐13 (MMP‐13) cleaves CTGF and releases several fragments, which are more potent than the parent molecule to induce fibrosis. The current study was aimed to elucidate the significance of MMP‐13 and CTGF and their downstream effects in liver injury and fibrosis. Hepatic fibrosis was induced using intraperitoneal injections of N‐nitrosodimethylamine (NDMA) in doses of 10 μg/g body weight on three consecutive days of each week over a period of 4 weeks in both wild‐type (WT) and MMP‐13 knockout mice. Administration of NDMA resulted in marked elevation of AST, ALT, TGF‐β1 and hyaluronic acid in the serum and activation of stellate cells, massive necrosis, deposition of collagen fibres and increase in total collagen in the liver of WT mice with a significant decrease in MMP‐13 knockout mice. Protein and mRNA levels of CTGF, TGF‐β1, α‐SMA and type I collagen and the levels of MMP‐2, MMP‐9 and cleaved products of CTGF were markedly increased in NDMA‐treated WT mice compared to the MMP‐13 knockout mice. Blocking of MMP‐13 with CL‐82198 in hepatic stellate cell cultures resulted in marked decrease of the staining intensity of CTGF as well as protein levels of full‐length CTGF and its C‐terminal fragments and active TGF‐β1. The data demonstrate that MMP‐13 and CTGF play a crucial role in modulation of fibrogenic mediators and promote hepatic fibrogenesis. Furthermore, the study suggests that blocking of MMP‐13 and CTGF has potential therapeutic implications to arrest liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号