首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protegrins (PG) are important in defending host tissues, preventing infection via an attack on the membrane surface of invading microorganisms. Protegrins have powerful antibiotic abilities, but the molecular-level mechanisms underlying the interactions of their beta-sheet motifs with the membrane are not known. Protegrin-1 (PG-1) is composed of 18 amino acids with a high content of basic residues and two disulfide bonds. Here we focused on the stability of PG-1 at the amphipathic interface in lipid bilayers and on the details of the peptide-membrane interactions. We simulated all-atom models of the PG-1 monomer with explicit water and lipid bilayers composed of both homogeneous POPC (palmitoyl-oleyl-phosphatidylcholine) lipids and a mixture of POPC/POPG (palmitoyl-oleyl-phosphatidylglycerol) (4:1) lipids. We observed that local thinning of the lipid bilayers mediated by the peptide is enhanced in the lipid bilayer containing POPG, consistent with experimental results of selective membrane targeting. The beta-hairpin motif of PG-1 is conserved in both lipid settings, whereas it is highly bent in aqueous solution. The conformational dynamics of PG-1, especially the highly charged beta-hairpin turn region, are found to be mostly responsible for disturbing the membrane. Even though the eventual membrane disruption requires PG-1 oligomers, our simulations clearly show the first step of the monomeric effects. The thinning effects in the bilayer should relate to pore/channel formation in the lipid bilayer and thus be responsible for further defects in the membrane caused by oligomer.  相似文献   

2.
Buffy JJ  Waring AJ  Lehrer RI  Hong M 《Biochemistry》2003,42(46):13725-13734
The dynamics and aggregation of a beta-sheet antimicrobial peptide, protegrin-1 (PG-1), are investigated using solid-state NMR spectroscopy. Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers. The Calpha-Halpha dipolar coupling of L5 is scaled by a factor of 0.16 in DLPC bilayers but has a near-unity order parameter of 0.96 in POPC bilayers. The larger couplings of PG-1 in POPC bilayers indicate immobilization of the peptide, suggesting that PG-1 forms oligomeric aggregates at the biologically relevant bilayer thickness. Exchange NMR experiments on F12 (13)CO-labeled PG-1 show that the peptide undergoes slow reorientation with a correlation time of 0.7 +/- 0.2 s in POPC bilayers. This long correlation time suggests that in addition to aggregation, geometric constraints in the membrane may also contribute to PG-1 immobilization. The PG-1 aggregates contact both the surface and the hydrophobic center of the POPC bilayer, as determined by (1)H spin-diffusion measurements. Thus, solid-state NMR provides a wide range of information about the molecular details of membrane peptide immobilization and aggregation in lipid bilayers.  相似文献   

3.
The depression of the phase-transition temperature of dimyristoyl- and dipalmitoylphosphatidylcholine vesicles induced by phenol has been investigated by fluorescence polarization. This effect is strongly pH and concentration dependent. Only the uncharged phenol molecule influences the fluidity of the bilayer so that the interaction of phenol with the bilayer can be situated in the hydrophobic acyl chain region. Direct measurements of the partitioning of phenol in the phospholipid vesicles confirm these results and show a limited and concentration-dependent solubility. Phase-transition temperature depressions, obtained from thermodynamic analysis of partition coefficient measurement, are in good agreement with the experimental values.  相似文献   

4.
The depth of insertion of an antimicrobial peptide, protegrin-1 (PG-1), in lipid bilayers is investigated using solid-state NMR. Paramagnetic Mn(2+) ions bind to the surface of lipid bilayers and induce distance-dependent dipolar relaxation of nuclear spins. By comparing the signal dephasing of the peptide with that of the lipids, whose segmental depths of insertion are known, we determined the depths of several residues of PG-1 in 1,2 dilauryl-sn-glycero-3-phosphotidylcholine (DLPC) bilayers. We found that residues G2 at the N-terminus and F12 at the beta-turn of the peptide reside near the membrane surface, whereas L5 and V16 are embedded in the acyl chain region. The depths increase in the order of G2 < F12 < L5 < V16. These intensity-dephasing results are confirmed by direct measurement of the paramagnetically enhanced (13)C transverse relaxation rates. The relative depths indicate that PG-1 is tilted from the bilayer normal, which is consistent with independent solid-state NMR measurements of PG-1 orientation in the same lipids (Yamaguchi et al., 2001). They also indicate that PG-1 is fully immersed in the lipid bilayer. However, a quantitative mismatch between the bilayer thickness and PG-1 length suggests a local thinning of the DLPC bilayer by 8-10 A. The depth sensitivity of this Mn(2+) dephasing technique is tunable with the Mn(2+) concentration to focus on different regions of the lipid bilayer.  相似文献   

5.
Raman spectra of dihexadecylphosphatidic acid (DHPA) and of dimyristoylphosphatidylcholine (DMPC) and its longer chain homologues have been obtained as a function of temperature in order to study the conformational order of the hydrocarbon chains in lipid bilayers. The frequency of the longitudinal acoustical (LA) vibration band is evaluated in terms of the length of all-trans chain segments. In the ordered phase, the chains are found to be overwhelmingly in the all-trans conformation. In the fluid phase, definite all-trans segments occur predominantly, the length of which coincides with the extension of the order parameter plateau known from deuterium magnetic resonance (DMR). The frequency of the skeletal optical (SO) trans vibration band leads to the same result, if evaluated under the assumption of vibrational decoupling by gauche bands in the fluid phase, thus lending support to this assumption. The intensity of this band determined from the band area increases linearly with chain length in the ordered phase and is independent of chain length in the fluid phase. Evaluating the intensity for the length of all-trans segments, the same result for the chain conformation is obtained as derived from the frequencies, with the additional information that the length of the all-trans segments in the fluid phase does not vary with chain length.  相似文献   

6.
Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.  相似文献   

7.
The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.  相似文献   

8.
Artificial lipid bilayers in the form of planar supported or vesicular bilayers are commonly used as models for studying interaction of biological membranes with different substances such as proteins and small molecule pharmaceutical compounds. Lipid membranes are typically regarded as inert and passive scaffolds for membrane proteins, but both non-specific and specific interactions between biomolecules and lipid membranes are indeed ubiquitous; dynamic exchange of proteins from the environment at the membrane interface can strongly influence the function of biological membranes. Such exchanges would either be of a superficial (peripheral) or integrative (penetrating) nature. In the context of viral membranes (termed envelopes), this could contribute to the emergence of zoonotic infections as well as change the virulence and/or pathogenicity of viral diseases. In this study, we analyze adsorption/desorption patterns upon challenging tethered liposomes and enveloped virus particles with proteins – or protein mixtures - such as bovine serum albumin, glycosylphosphatidylinositol anchored proteins and serum, chosen for their different lipid-interaction capabilities. We employed quartz crystal microbalance and dual polarization interferometry measurements to measure protein/membrane interaction in real time. We identified differences in mass uptake between the challenges, as well as differences between variants of lipid bilayers. Tethered viral particles showed a similar adsorption/desorption behavior to liposomes, underlining their value as model system. We believe that this methodology may be developed into a new approach in virology and membrane research by enabling the combination of biophysical and biochemical information.  相似文献   

9.
Steric effects on interaction of tea catechins with lipid bilayers   总被引:5,自引:0,他引:5  
Interaction of tea catechins with lipid bilayers has been investigated with liposome systems. Tea catechins are classified into cis-type and trans-type from the configuration of the two hydrogens at the 2 and 3 positions on the C-ring. The amount of trans-type catechins incorporated into liposomes was less than that of the respective cis-type catechins. Furthermore, the order of the partition coefficients of catechins in an n-octanol/PBS system is the same as that of the amount incorporated into liposomes. These results indicate that in addition to the number of hydroxyl groups on the B-ring and the presence of the galloyl moiety, the stereochemical structure of the C-ring also governs the hydrophobicity and the affinity for lipid bilayers. Trans-type catechins with the galloyl moiety were located on the surface of the lipid bilayer, as well as cis-type catechins with the galloyl moiety, and perturbed the membrane structure. These different stereochemical structures should influence the affinity for lipid bilayers, the alteration of membrane structures, and the difference in the order of the biological activities.  相似文献   

10.
We demonstrate that the ganglioside G(M1) in lipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) exhibits a non-uniform lateral distribution, i.e., enriched regions of GM(1) molecules are formed, which is an argument in favour of self-aggregation of G(M1) being an intrinsic property of G(M1) ganglioside. This was concluded from energy transfer/migration studies of BODIPY-labelled gangliosides by means of time-resolved fluorescence lifetime and depolarization experiments. Three fluorophore-labelled gangliosides were synthesized to include either of two spectroscopically different BODIPY groups. These were specifically localized either in the polar headgroup region or in the non-polar region of the lipid bilayer. An eventual ganglioside-ganglioside affinity/aggregation induced by the BODIPY groups was experimentally excluded, which suggests their use in examining the influence of G(M1) in more complex systems.  相似文献   

11.
The conformational and orientation studies in lipid bilayers of 21 amino acid peptides bearing six crown ethers are reported. The compounds were designed to form artificial ion channels by stacking the crown rings, and were shown to be functional in bilayer membranes. We used Fourier transform infrared spectroscopy and CD spectropolarimetry to study the conformation of the peptides in solution and in lipid bilayers. These studies revealed that hexacrown peptides retain their alpha-helical conformation when incorporated in a lipid bilayer environment. Attenuated total reflectance spectroscopy was used to investigate the orientation of the peptides in a lipid bilayer. Results demonstrated that the peptides are not oriented at a fixed angle in membrane, but rather are in incorporation equilibrium between an active state parallel to the lipid chain and an inactive state adsorbed at the surface of the bilayer. From these results, we propose a model for the channel activity and the gating mechanism of these hexacrown peptides in bilayer membranes.  相似文献   

12.
Experimental studies of a number of antimicrobial peptides are sufficiently detailed to allow computer simulations to make a significant contribution to understanding their mechanisms of action at an atomic level. In this review we focus on simulation studies of alamethicin, melittin, dermaseptin and related antimicrobial, membrane-active peptides. All of these peptides form amphipathic alpha-helices. Simulations allow us to explore the interactions of such peptides with lipid bilayers, and to understand the effects of such interactions on the conformational dynamics of the peptides. Mean field methods employ an empirical energy function, such as a simple hydrophobicity potential, to provide an approximation to the membrane. Mean field approaches allow us to predict the optimal orientation of a peptide helix relative to a bilayer. Molecular dynamics simulations that include an atomistic model of the bilayer and surrounding solvent provide a more detailed insight into peptide-bilayer interactions. In the case of alamethicin, all-atom simulations have allowed us to explore several steps along the route from binding to the membrane surface to formation of transbilayer ion channels. For those antimicrobial peptides such as dermaseptin which prefer to remain at the surface of a bilayer, molecular dynamics simulations allow us to explore the favourable interactions between the peptide helix sidechains and the phospholipid headgroups.  相似文献   

13.
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.  相似文献   

14.
The renin–angiotensin–aldosterone system (RAAS) plays a key role in the regulation of blood pressure. Renin is the rate limiting enzyme of the RAAS and aliskiren is a highly potent and selective inhibitor of the human renin. Renin is known to be active both in the circulating blood stream as well as locally, when bound to the (pro)-renin receptor ((P)RR). In this study we have investigated a possible mechanism of action of aliskiren, in which its accumulation in the plasma membrane is considered as an essential step for effective inhibition. Aliskiren's interactions with model membranes (cholesterol rich and poor) have been investigated by applying different complementary techniques: differential scanning calorimetry (DSC), Raman spectroscopy, magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and small- and wide-angle X-ray scattering (SAXS and WAXS). In addition, in silico molecular dynamics (MD) calculations were applied for further confirmation of the experimental data. Aliskiren's thermal effects on the pre- and main transition of dipalmitoyl-phosphatidylcholine (DPPC) membranes as well as its topographical position in the bilayer show striking similarities to those of angiotensin II type 1 receptor (AT1R) antagonists. Moreover, at higher cholesterol concentrations aliskiren gets expelled from the membrane just as it has been recently demonstrated for the angiotensin receptor blocker (ARB) losartan. Thus, we propose that both the AT1R and the (P)RR-bound renin active sites can be efficiently blocked by membrane-bound ARBs and aliskiren when cholesterol rich membrane rafts/caveolae are formed in the vicinity of the receptors.  相似文献   

15.
Green tea contains a high concentration of such catechins as (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Their biological activities have been evaluated by in vitro experiments using cultured cells or bacteria, but the order of activity of the various catechins differed with the study. We have been studying the interaction of tea catechins with lipid bilayers, and clarified that the number of hydroxyl groups on the B-ring, the presence of the galloyl moiety, and the stereochemical structure of each catechin govern their affinity for lipid bilayers. We investigated in this present study the effects of various external factors on the affinity of tea catechins for lipid bilayers by using liposomes as model membranes. The amount of tea catechins incorporated into the lipid bilayers increased with increasing salt concentration in an aqueous medium and decreased with increasing negative electric charge of the lipid bilayers. Furthermore, the amount of EGCg or ECg incorporated into the lipid bilayers increased with increasing EC concentration. These results reveal that the salt concentration in an aqueous medium, the electric charge of the membrane, and the presence of other catechins governed the affinity of tea catechins for the lipid bilayers.  相似文献   

16.
In order to investigate the significance of preferred conformations of the saccharide for the steric orientation and recognition of glycosphingolipids at the membrane surface, the conformational free energy calculations were carried out on the asialo-GM1 [GA1; β-D -Gal(1 → 3) β-D -GalNAc(1 → 4) β-D -Gal(1 → 4) β-D -Glc-O-ceramide] using a new program CONCARB (CONformational study program for CARBohydrate) in the unhydrated and hydrated states. The overall backbone conformation of GA1 appears nearly to be extended with a little bent at the glycosidic II–III linkage, in which two pyranose rings of Gal(IV)-GalNAc-(III) moiety orient approximately perpendicular to those of Gal(II)-Glc(I) moiety. This is consistent with the structures deduced from high-sensitivity differential scanning calorimetry experiments and the nmr study on GA1. The calculated glycosidic torsion angles of the lowest free energy conformation of GA1 in the hydrated state are in accord with the structures of relevant oligosaccharides deduced from nmr experiments and hard sphere exoanomeric calculations. A comparison of the values of glycosidic torsion angles ϕ and π of GA1 and its constituent oligosaccharides indicates that the overall backbone conformation of each oligosaccharide is retained when the oligosaccharide chain becomes longer. This implies that the short-range interactions between the nearest-neighbored saccharides are of significant importance in stabilizing the overall backbone conformation of GA1 in both the unhydrated and hydrated states. The different orientation and hydrogen bonds of hydroxymethyl and hydroxyl groups from one oligosaccharide to another suggest that the medium- and long-range interactions are also of consequence. Hydration seems to affect significantly the conformation of these groups, but not to perturb remarkably the overall backbone conformation of GA1. © 1997 John Wiley & Sons, Inc. Biopoly 42: 19–35, 1997  相似文献   

17.
The interaction of three vitamin A derivatives or retinoids: all-trans-retinoic acid, 13-cis-retinoic acid and retinol with multilamellar phospholipid bilayers was studied using a combination of 2H- and 31P-NMR measurements. The following model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers; (2) bilayers composed of a mixture of DPPC and bovine heart phosphatidylcholine (PC); (3) mixed PC/phosphatidylethanolamine (PE) bilayers. Only a weak interaction was observed between 13-cis-retinoic acid and DPPC membranes. Addition of all-trans-retinoic acid at a molar ratio of 1:2 to the lipid causes a small decrease (5 C degrees) in the gel to liquid crystalline phase-transition temperature of DPPC, a small increase in the order parameters of the lipid side-chains of single component bilayers and no measurable effect in the other lipid systems studied. Considerably larger perturbation in the lipid bilayer structure is introduced by addition of retinol which, at a molar ratio of 1:2 to the lipid, lowered the gel to liquid crystalline phase-transition temperature of DPPC by 21 C degrees and caused a decrease of order parameters of the lipid side-chains in all three lipid bilayer systems. These effects are consistent with intercalation of retinol molecules into the bilayer interior. The results for the mixed PC/PE bilayers indicate that the presence of retinol caused lateral separation of PE- and retinol-enriched regions.  相似文献   

18.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by (31)P and (1)H magic-angle spinning (MAS) NMR spectroscopy. The (31)P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

19.
L J Lis  V A Parsegian  R P Rand 《Biochemistry》1981,20(7):1761-1770
We have confirmed that CaCl2 swells the multilayer lattice formed by dipalmitolyphosphatidylcholine (DPPC) in an aqueous solution. Specifically, at room temperature 1 mM CaCl2 causes these lipid bilayers to increase their separation, dw, from 19 A in pure water to greater than 90 A. CaCl2 concentrations greater than 4 mM cause less swelling. We have measured the net repulsive force between the bilayers in 30 mM CaCl2 at T = 25 degrees C (below the acyl chain freezing temperature). For interbilayer separations between 30 and 90 A, the dominant repulsion between bilayers is probably electrostatic; Ca2+ binds to DPPc lecithin bilayers, imparting a charge to them. The addition of NaCl to CaCl2 solutions decreases this repulsion. For dw less than 20 A, the bilayer repulsion appears to be dominated by the "hydration forces" observed previously between both neutral and charged phospholipids. From the electrostatic repulsive force, we estimate the extent of Ca2+ binding to the bilayer surface. The desorption and bound Ca2+, apparent when bilayers are pushed together, is more rapid than one would expect if an association constant governed Ca2+ binding. The association affinity does not appear to be a fixed quantity but rather a sensitive function of ionic strength and bilayer separation.  相似文献   

20.
Changes in secondary structure of DNA and non-histone chromosomal protein HMGB1 during the formation of the complex have been studied by circular dichroism and UV spectroscopy. It was demonstrated that the HMGB1 protein is able to change its secondary structure upon binding to DNA. Based on the assumption that there are two spectroscopically distinguishable forms of the HMGB1 in solution, we estimated the fraction of bound protein. The fraction of bound protein decreases at higher protein to DNA ratios r from 0.48 at r = 0.13 to 0.06 at r = 2.43. It was shown that HMGB1 is able to induce considerable changes in DNA structure, even when the amount of protein actually bound is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号