首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Limb bud cells were isolated from HH stage 22–23 chick embryos and were grown as a ‘spot culture’ in in vitro conditions which support their differentiation into chondrocytes and myotubes. By day 4 of culture, numerous chondrocyte nodules developed and were scattered mainly in the very centre of the cell spot. In contrast, multinucleated myotubes formed at both the centre and the periphery of the cell spot. Treatment with vitamin A starting on day 1, inhibited chondrogenesis in these cultures, and by day 4–6 chondrocyte nodules could not be detected histologically. In contrast, no dose of vitamin A tested was effective in suppressing the development of multi-nucleated myotubes. These data show that vitamin A selectively inhibits chondrogenesis but not myogenesis in limb bud cell cultures.  相似文献   

2.
Isotretinoin (13-cis-RA) is known to be teratogenic in humans and laboratory animals. The relatively low potency of 13-cis-RA in NRMI mice in comparison to the all-trans isomer has been proposed to be due to minimal transfer across the placenta (Creech-Kraft et al., '87). To further delineate the teratogenic potential of 13-cis-RA, a dose-response, temporal study was conducted in vivo and in vitro using submerged limb culture and image analysis evaluation of development. Dose-dependent embryotoxicity was produced by treatment on GD 7, while later treatments produced inconsistent effects on resorption rate and fetal weight. Treatment on either GD 7 or GD 8 produced a number of malformations in dose-dependent manner. Most common were tail and cleft palate defects, which were produced by 13-cis-RA on each of the days tested (GD 7-GD 11), with peak malformations occurring on GD 9 and GD 10 for tail and cleft palate, respectively. Most limb defects were produced after GD 10 and GD 11 exposure. The observed frequency of defects confirmed that in ICR mice 13-cis-RA is about 10-fold less potent than all-trans-RA as a limb teratogen (Kwasigroch and Kochhar, '80; Kochhar and Penner, '87). Effects observed via image analysis following maintenance of limbs in serum-free culture medium were dose dependent. Low dose treatment produced occasional polydactyly. The intermediate dose caused somewhat variable region-dependent increases in cartilaginous bone anlagen area. The high dose of 13-cis-RA produced irregular limb outlines, a reduction in bone anlagen area, and an inhibition of alcian blue staining of cartilage without affecting morphogenesis of bone anlagen. These results confirm that, when the effects of the administered doses are evaluated, 13-cis-RA is a much less potent teratogen in comparison to the all-trans isomer. More importantly, the results show that retinoids can enhance (at low and intermediate doses), depress (at high doses), or eliminate (high dose) chondrogenenic expression during limb morphogenesis in vitro. This indicates that retinoids such as 13-cis-RA can manipulate events in development in a variety of ways (i.e., produce malformations, interfere with chondrogenic expression without affecting morphogenesis, and stimulate growth) in a dose- and time-dependent manner. Although the ability of RA to act as a true morphogen has recently been questioned (Wanek et al., '91; Noji et al., '91), the results presented here support the position that RA can modulate the development of the limb (and probably other organ systems) in several vertebrate species.  相似文献   

3.
Retinoic acid (RA) is known to have dramatic effects on limb pattern formation and has been shown to exert its effects on limbs by converting anterior limb bud cells into cells with posterior positional properties. In this study we find that dissociated posterior limb bud cells from chick and mouse embryos cultured at high density (micromass cultures) are able to stimulate the formation of supernumerary digits when grafted into developing wing buds and that the positional identity of both chick and mouse limb bud cells can be maintained for finite periods of time in vitro. Furthermore, using this assay system we have tested whether anterior cells from mouse and chick limb buds can be converted into cells with posterior identity by exposure to RA in vitro. We find that anterior limb bud cells acquire posterior properties after culture in the presence of RA.  相似文献   

4.
Using our improved method for culturing 11-day mouse forelimb buds in vitro, we have investigated the effects of a local application of all-trans-retinoic acid (RA) on growth, cartilaginous differentiation and skeletal patterning in the mammalian limb bud. Carrier implants of catgut impregnated with DMSO or various doses of RA in DMSO were inserted at the apex of the buds in the proximo-distal axis just beneath the apical ectodermal ridge. After 6 days of culture, cartilaginous skeletons were stained and explants were processed for morphological analysis and quantitative study using computerized optical image analysis. Buds treated with low doses of RA exhibited stimulated growth and chondrogenesis. Moreover, hypertrophied and fused metacarpals were seen within explants treated with the lowest dose. High doses strongly inhibited growth and skeletal morphogenesis. An intermediate dose sustained cartilaginous differentiation at the same level as low doses, but concomitantly disturbed the skeletal pattern. These results are discussed considering reported RA effects on other experimental systems including avian limb bud as an in vivo model or cell cultures as an in vitro simplified model.  相似文献   

5.
Previous studies of inhibitors of ricin A chain (RA) mainly focused on the analogues of adenine and ribosomal RNA (rRNA) substrates. In this paper, a novel antagonist peptide (named PT) was designed rationally based on the crystal structure of the complex RA–rRNA. Theoretical results had clearly revealed the blockage of PT in the RA–rRNA interaction. The competitive inhibition experiment indicated that PT could significantly inhibit the binding activity of RA with anti-RA antibody. In order to further prove the competitive effect of PT against RA, N-glycosidase antagonizing activity of PT in cell-free system was evaluated using luciferase protein synthesis inhibition assay. Consequent data demonstrated that, at a RA level (0.022 nM) giving 50% decrease of protein synthesis in the absence of the peptide, protein synthesis could be recovered by the peptide for up to 80% at a level of 0.1 microgram/ml. This study highlights the interest of computation-aided method in the design of novel peptides with the ability to block the deleterious biological effects of RA. In addition, the method of luciferase protein synthesis inhibition assay in cell-free system which should provide rapid, sensitive, selective, and quantitative assessment may be developed to evaluate the potential antagonizing activity of RA inhibitors.Shuntao Wang and Jiannan Feng Contributed Equally to This Work  相似文献   

6.
Using our improved method for culturing 11-day mouse forelimb buds in vitro, we have investigated the effects of a local application of all-trans-retinoic acid (RA) on growth, cartilaginous differentiation and skeletal patterning in the mammalian limb bud. Carrier implants of catgut impregnated with DMSO or various doses of RA in DMSO were inserted at the apex of the buds in the proximo-distal axis just beneath the apical ectodermal ridge. After 6 days of culture, cartilaginous skeletons were stained and explants were processed for morphological analysis and quantitative study using computerized optical image analysis. Buds treated with low doses of RA exhibited stimulated growth and chondrogenesis. Moreover, hypertrophied and fused metacarpals were seen within explants treated with the lowest dose. High doses strongly inhibited growth and skeletal morphogenesis. An intermediate dose sustained cartilaginous differentiation at the same level as low doses, but concomitantly disturbed the skeletal pattern. These results are discussed considering reported RA effects on other experimental systems including avian limb bud as an in vivo model or cell cultures as an in vitro simplified model.  相似文献   

7.
Studies of neural, hepatic, and other cells have demonstrated thatin vitroethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformitiesin vivo,prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23–25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant ofin vitrochondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in35SO4incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol onin vitrochondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.  相似文献   

8.
Vitamin D is essential for normal metabolism of phosphorus and calcium, and differentiation of skeletal elements. 1,25 dihydroxyvitamin-D3, the biologically active metabolite, acts as an induction/proliferation switch in various cell types and promotes chondrogenesis of chick limb bud mesenchymal cells. The function of vitamin D is mediated through its nuclear receptor, the vitamin D receptor (VDR). The proliferative actions of 1,25(OH)2-D3 on limb bud mesenchymal cells are similar to the ones produced by retinoids, such as all- trans retinoic acid (RA) or 9- cis retinoic acid (9- cis ). The retinoids have been shown to be compounds of extreme importance in the field of limb development and regeneration. In order to examine possible roles of vitamin D metabolites on limb regeneration, the effects of 1,25(OH)2-D3, 24,25(OH)2-D3 and KH1060 (a more potent metabolite) alone or in conjunction with all- trans RA or 9- cis RA on the regenerating axolotl limb. Vitamin D affects limb morphogenesis by generating abnormalities in skeletal elements. Synergism of vitamin D with retinoic acid in affecting pattern formation is suggested by the results.  相似文献   

9.
Recent evidence has shown that retinoic acid (RA) signalling is required for early pancreatic development in zebrafish and frog but its role in later development in mammals is less clear cut. In the present study, we determined the effects of RA on the differentiation of the mouse embryonic pancreas. Addition of all-trans retinoic acid (atRA) to embryonic pancreatic cultures induced a number of changes. Branching morphogenesis and exocrine differentiation were suppressed and there was premature formation of endocrine cell clusters (although the total area of beta cells was not different in control and atRA-treated buds). We investigated the mechanism of these changes and found that the premature formation of beta cells was associated with the early expression of high-level Pdx1 in the endocrine cell clusters. In contrast, the suppressive effect of RA on exocrine differentiation may be due to a combination of two mechanisms (i) up-regulation of the extracellular matrix component laminin and (ii) enhancement of apoptosis. We also demonstrate that addition of fibroblast growth factor (FGF)-10 is able to partially prevent apoptosis and rescue exocrine differentiation and branching morphogenesis in atRA-treated cultures but not in mice lacking the FGF receptor 2-IIIb, suggesting the effects of FGF-10 are mediated through this receptor.  相似文献   

10.
Due to the unsatisfied effects of clinical drugs used in rheumatoid arthritis (RA), investigators shifted their focus on the biotherapy. Although human gingival mesenchymal stem cells (GMSC) have the potential to be used in treating RA, GMSC‐based therapy has some inevitable side effects such as immunogenicity and tumorigenicity. As one of the most important paracrine mediators, GMSC‐derived exosomes (GMSC‐Exo) exhibit therapeutic effects via immunomodulation in a variety of disease models, bypassing potential shortcomings of the direct use of MSCs. Furthermore, exosomes are not sensitive to freezing and thawing, and can be readily available for use. GMSC‐Exo has been reported to promote tissue regeneration and wound healing, but have not been reported to be effective against autoimmune diseases. We herein compare the immunomodulatory functions of GMSC‐Exo and GMSC in collagen‐induced arthritis (CIA) model and in vitro CD4+ T‐cell co‐culture model. The results show that GMSC‐Exo has the same or stronger effects compared with GMSC in inhibiting IL‐17A and promoting IL‐10, reducing incidences and bone erosion of arthritis, via inhibiting IL‐17RA‐Act1‐TRAF6‐NF‐κB signal pathway. Our results suggest that GMSC‐Exo has many advantages in treating CIA, and may offer a promising new cell‐free therapy strategy for RA and other autoimmune diseases.  相似文献   

11.
Selective stimulation of in vitro limb-bud chondrogenesis by retinoic acid   总被引:8,自引:0,他引:8  
Embryonic exposure to pharmacologic doses of vitamin A analogs (retinoids) is a well-known cause of limb-skeletal deletions, limb truncation and other skeletal malformations. The exclusively inhibitory effect of retinoic acid (RA) on chondrogenesis in standard serum-containing cultures of limb-bud mesenchymal cells is equally well known and has provided a means to explore the cellular basis for RA-mediated skeletal teratogenesis. Recent studies showing that lower RA concentrations can cause skeletal duplication when applied directly to the anterior border of a developing limb, suggest that RA may have a role in normal limb development as a diffusible morphogen capable of regulating skeletal pattern. While RA treatment causes both, skeletal deletions and duplications are clearly different (if not opposing) effects, the latter of which is difficult to reconcile with RA's heretofore exclusively inhibitory effect on in vitro chondrogenesis. In the present study. RA's effects on chondrogenesis and myogenesis were examined in serum-free cultures of chick limb-bud mesenchymal cells and compared with its effects on similar cultures grown in serum-containing medium. When added to serum-free medium, concentrations of RA known to cause skeletal duplication in vivo dramatically enhanced in vitro chondrogenesis (to over 200% of control values) as judged by both Alcian-blue staining and [35S]sulfate incorporation, while having little effect on myogenesis. Higher concentrations inhibited both chondrogenesis and myogenesis. The results indicate that at physiological concentrations. RA can selectively modulate chondrogenic expression and suggest that at higher concentrations, RA's inhibitory effects are less specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Retinoic acid (RA) and nitric oxide (NO) are known to promote neuronal development in both vertebrates and invertebrates. Retinoic acid receptors appear to be present in cnidarians and NO plays various physiological roles in several cnidarians, but there is as yet no evidence that these agents have a role in neural development in this basal metazoan phylum. We used primary cultures of cells from the sea pansy Renilla koellikeri to investigate the involvement of these signaling molecules in cnidarian cell differentiation. We found that 9‐cis RA induce cell proliferation in dose‐ and time‐dependent manners in dishes coated with polylysine from the onset of culture. Cells in cultures exposed to RA in dishes devoid of polylysine were observed to differentiate into epithelium‐associated cells, including sensory cells, without net gain in cell density. NO donors also induce cell proliferation in polylysine‐coated dishes, but induce neuronal differentiation and neurite outgrowth in uncoated dishes. No other cell type undergoes differentiation in the presence of NO. These observations suggest that in the sea pansy (1) cell adhesion promotes proliferation without morphogenesis and this proliferation is modulated positively by 9‐cis RA and NO, (2) 9‐cis RA and NO differentially induce neuronal differentiation in nonadherent cells while repressing proliferation, and (3) the involvement of RA and NO in neuronal differentiation appeared early during the evolutionary emergence of nervous systems. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 842–852, 2010  相似文献   

13.
Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D) culture systems rather than in two-dimensional (2-D) culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM) are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules), EpH4 cells (mouse mammary gland), and R2/7 cells (human colon) expressing wild-type α-catenin (R2/7 α-Cate cells). These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.  相似文献   

14.
Retinoic acid (RA) has dramatic effects on the pattern of developing and regenerating vertebrate limbs. These effects are considered to result from RA-induced changes in the positional identity of limb cells, and involve the formation of extra structures. Whether the growth required to form the supernumerary parts of the pattern is a primary effect of RA treatment or a secondary effect that follows after a change in positional identity is not at present known. In this paper we have investigated the effects of RA treatment on the growth of cells from anterior and posterior halves of mouse limb buds in vitro. We observed that under our culture conditions, limb bud cells treated with 1 nM to 1 microM RA (0.3 ng/ml to 300 ng/ml) continue to grow but do so at a significantly slower rate than control cultures. There is a maximum inhibition of growth (50% of controls) between 10 nM and 100 nM RA, which corresponds to the measured range of concentrations of RA in vivo. Our observation of a significant decrease in growth rate over a wide range of RA concentrations is consistent with comparable reports of growth inhibition for a large number of other cell types in vitro as well as with the observation that exogenous RA inhibits blastemal growth in amphibians during the period of exposure to RA. We propose that the effects of RA on growth, either enhancement in vivo or reduction in vitro, can be seen as consequences of the ability of RA to alter positional identity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Increased numbers of regulatory T (Treg) cells are found in synovial fluid from patients with rheumatoid arthritis (RASF) compared with peripheral blood. However, Treg cells in RASF have been shown to have a decreased capacity to suppress T cells. Here we phenotypically classified CD4+ T cells in RASF into six subsets based on the expression of CD45RA, CCR7, CD27 and CD28, and demonstrated that the CCR7−CD45RA−CD27+CD28+ TEM subset was significantly increased in synovial fluid compared with peripheral blood. In addition, the proportion of Foxp3+ Treg cells in the CCR7−CD45RA−CD27+CD28+ TEM subset was significantly increased in RASF. Furthermore, most of the Foxp3+ Treg cells in RASF were non-suppressive CD45RA−Foxp3low non-Treg cells, and the frequency of the non-Treg cells in the CCR7−CD45RA−CD27+CD28+ TEM subset was significantly increased in RASF. Our findings suggest that the pro-inflammatory environment in RA joints may induce the increase of CD45RA−Foxp3low non-Treg cells in synovial fluid.  相似文献   

16.
17.
Effects of retinoic acid (RA) on prostaglandin E2 (PGE2) and cyclic AMP (cAMP) concentrations were investigated in high density, micromass cultures of mesenchymal cells derived from chick limb buds. Exposure of cells during the initial 24 h of culture to RA concentrations between 0.05–1.0 μg/ml inhibited chondrogenesis in a dose-dependent manner with 1.0 μg/ml totally inhibiting cartilage formation. Concentrations of PGE2 and cAMP increased during the prechondrogenic period in control cells in a closely related way and remained elevated throughout the six-day period examined. Addition of RA (0.05 and 0.5 μg/ml) did not significantly alter cAMP concentrations at any time point, but significantly elevated PGE2 levels relative to control cells in six-day cultures in a concentration-dependent manner. Addition of dibutyryl cAMP enhanced chondrogenesis in control cells between days 3 and 4, but failed to alter the inhibitory effect of RA on chondrogenesis. The results indicate that while PGE2 and cAMP are important signals in cartilage differentiation, the inhibitory effects of RA on this process are mediated through some other mechanism.  相似文献   

18.
Summary We have investigated the origin of rapidly adhering (RA) cells in three cases of neural tube defects (two anencephali, one encephalocele). We were able to demonstrate the presence of glial fibrillary acidic (GFA) protein in variable percentages (4–80%) of RA cells cultured for 4–6 days by use of indirect immunofluorescence with GFA antiserum. Cells cultured from amniotic fluids of normal pregnancies and fetal fibroblasts were completely GFA protein negative. GFA protein is well established as a highly specific marker for astrocytes. Demonstration of astrocytes may prove to be a criterion of high diagnostic value for neural tube defects. The percentage of astrocytes decreased with increasing culture time, while the percentage of fibronectin positive cells increased both in amniotic fluid cell cultures from neural tube defects and normal pregnancies.  相似文献   

19.
Retinoic acid improves epidermal morphogenesis   总被引:19,自引:0,他引:19  
Hyper- and hypovitaminosis A both provoke epithelial pathologies in animals and humans. This suggests that a critical level of retinoic acid (RA) is required in vivo for the maintenance of normal architecture and function of these tissues. However, no beneficial, but only adverse effects of RA on epithelia have been so far observed in vitro. For instance, addition of RA to keratinocyte cultures has been shown to inhibit epidermal differentiation while this process is stimulated by serum delipidization, which reduces RA concentration in the medium. Assuming that the previous failure to demonstrate beneficial effects of RA on the epidermal phenotype in vitro was due to culture conditions too far from the in vivo conditions we decided to reevaluate the effect of RA in a culture system optimized for epidermal morphogenesis: the "emerged dermal equivalent." When human keratinocytes were grown in such a system with total fetal calf serum, the resulting epithelium was very similar to normal epidermis. But when delipidized serum was used, the epithelium was abnormal in the direction of excessive maturation (hyperkeratosis). When physiological concentrations of RA (10(-9) and 10(-8) M) were added to the delipidized serum supplement, a normal architecture (orthokeratosis) was restored. However, as classically described in the literature, higher RA concentrations (greater than 10(-7) M) reduced epidermal maturation and produced parakeratosis. Thus, although it is unquestionable that RA reduces the synthesis of epidermal-specific differentiation markers, an optimal epidermal morphogenesis seems to be achieved only in the presence of a critical RA concentration.  相似文献   

20.
Chondrogenesis of mesenchymal cells from the frontonasal mass, mandibles and maxillae of stage-24 chick embryos has been investigated in micromass (high-density) cultures. Distinct differences in the amount and pattern of cartilage differentiation are found. In cultures of frontonasal mass cells, a central sheet of cartilage develops; in cultures of mandible cells, less cartilage differentiates and nodules form; while in cultures of maxillae cells, virtually no chondrogenesis takes place. The same patterns of cartilage are found in cultures established from stage-20 embryos. At stage 28, frontonasal mass cultures form cartilage nodules and the number of nodules in mandible cultures is markedly decreased. There are striking parallels between the chondrogenic patterns of cells from the face and limb buds in micromass culture. The frontonasal mass cell cultures of stage-20 and -24 chick embryos resemble those established from the progress zone of limb buds. The progress zone is an undifferentiated region of the limb in which positional cues operate. Cultures established from the frontonasal mass of stage-28 chick embryos and from the mandibles of all stages resemble cultures of whole limb buds. These contain a mixture of committed and uncommitted cells. Ectoderm from facial primordia locally inhibits chondrogenesis in micromass cultures and this could provide a positional cue. The differences in chondrogenic potential of cells from facial primordia may underlie the specific retinoid effects on the frontonasal mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号