首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Entrainment of circannual rhythms of body mass and reproduction was monitored for 3 years in female golden-mantled ground squirrels maintained in a simulated natural photoperiod. Both pinealectomized and pineal-intact squirrels generated circannual rhythms of body mass and estrus, but only the intact animals entrained these rhythms to a period of 365 days. In the second and third years after treatment, the period of the body mass rhythm was significantly shorter than 365 days for pinealectomized squirrels, and variance in tau among these animals was significantly greater than for intact squirrels. A similar pattern was evident in the rhythm of reproduction, which was phase-disrupted in pinealectomized squirrels but entrained in intacts. Seasonal changes in duration of nocturnal melatonin secretion by the pineal appear to be necessary to produce phase-delays required to entrain the circannual clock to a period of 12 months.  相似文献   

2.
In indigenous arctic reindeer and ptarmigan, circadian rhythms are not expressed during the constant light of summer or constant dark of winter, and it has been hypothesized that a seasonal absence of circadian rhythms is common to all vertebrate residents of polar regions. Here, we show that, while free-living arctic ground squirrels do not express circadian rhythms during the heterothermic and pre-emergent euthermic intervals of hibernation, they display entrained daily rhythms of body temperature (T(b)) throughout their active season, which includes six weeks of constant sun. In winter, ground squirrels are arrhythmic and regulate core body temperatures to within ±0.2°C for up to 18 days during steady-state torpor. In spring, after the use of torpor ends, male but not female ground squirrels, resume euthermic levels of T(b) in their dark burrows but remain arrhythmic for up to 27 days. However, once activity on the surface begins, both sexes exhibit robust 24 h cycles of body temperature. We suggest that persistence of nycthemeral rhythms through the polar summer enables ground squirrels to minimize thermoregulatory costs. However, the environmental cues (zeitgebers) used to entrain rhythms during the constant light of the arctic summer in these semi-fossorial rodents are unknown.  相似文献   

3.
In golden-mantled ground squirrels, phase angles of entrainment of circadian locomotor activity to a fixed light-dark cycle differ markedly between subjective summer and winter. A change in ambient temperature affects entrainment only during subjective winter when it also produces pronounced effects on body temperature (Tb). It was previously proposed that variations in Tb are causally related to the circannual rhythm in circadian entrainment. To test this hypothesis, wheel-running activity and Tb were monitored for 12 to 14 months in castrated male ground squirrels housed in a 14:10 LD photocycle at 21 degrees C. Animals were treated with testosterone implants that eliminated hibernation and prevented the marked winter decline in Tb; these squirrels manifested circannual changes in circadian entrainment indistinguishable from those of untreated animals. Both groups exhibited pronounced changes in phase angle and alpha of circadian wheel-running and Tb rhythms. Seasonal variation in Tb is not necessary for circannual changes in circadian organization of golden-mantled ground squirrels.  相似文献   

4.
Female golden-mantled ground squirrels, maintained in an LD 14:10 photoperiod at 23 degrees C, sustained lesions of the paraventricular nucleus (PVN) or sham operations. Body weight and reproductive status were recorded weekly pre- and postoperatively. Bilateral lesions of the PVN did not eliminate, phase-shift, or otherwise disrupt the circannual rhythms of body mass or reproduction. Absolute levels of body weight were unaffected by PVN ablation. The PVN is not an essential component of the oscillatory system that generates circannual cycles in ground squirrels.  相似文献   

5.
The circadian systems of two burrowing rodents, the normothermic diurnal antelope ground squirrel (Ammospermophilus leucurus) and the heterothermic nocturnal Syrian hamster (Mesocricetus auratus) were compared with respect to entrainment by temperature cycles. Both species were subjected to the same ambient temperature (Ta) cycles with amplitudes between 4 and 12ºC at constant illuminations (100 and 0.05 lux in squirrels; 1.0 lux in hamsters). Wheel running activity was continuously measured. There was considerable interindividual variation in the daily pattern of wheel-running activity and in the ability to entrain to Ta cycles of the same amplitude in both species. The activity rhythms of about 33 to 67% of the animals of the two species entrained to Ta cycles with amplitudes of 6 to 12ºC. One of six squirrels and one of nine hamsters even entrained to Ta cycles of 4ºC. In the antelope ground squirrels, activity occurred predominantly in the cooler phase of the Ta cycle, whereas hamsters were mainly active during the warmer phase. In some squirrels, the activity rhythms were split in two main components which were both entrained to the cooler fraction of the Ta cycle, sometimes with additional (masking) activity during the warmer fraction (above 30ºC). The results do not support the earlier view that temperature cycles affect the circadian systems of heterothermic mammals, including hibernators, more strongly than those of normothermic species. It is suggested that behavioral and physiological adjustments to the environmental conditions play an important role for mammalian circadian systems to respond to temperature changes as a zeitgeber.  相似文献   

6.
The circadian systems of two burrowing rodents, the normothermic diurnal antelope ground squirrel (Ammospermophilus leucurus) and the heterothermic nocturnal Syrian hamster (Mesocricetus auratus) were compared with respect to entrainment by temperature cycles. Both species were subjected to the same ambient temperature (Ta) cycles with amplitudes between 4 and 12ºC at constant illuminations (100 and 0.05 lux in squirrels; 1.0 lux in hamsters). Wheel running activity was continuously measured. There was considerable interindividual variation in the daily pattern of wheel-running activity and in the ability to entrain to Ta cycles of the same amplitude in both species. The activity rhythms of about 33 to 67% of the animals of the two species entrained to Ta cycles with amplitudes of 6 to 12ºC. One of six squirrels and one of nine hamsters even entrained to Ta cycles of 4ºC. In the antelope ground squirrels, activity occurred predominantly in the cooler phase of the Ta cycle, whereas hamsters were mainly active during the warmer phase. In some squirrels, the activity rhythms were split in two main components which were both entrained to the cooler fraction of the Ta cycle, sometimes with additional (masking) activity during the warmer fraction (above 30ºC). The results do not support the earlier view that temperature cycles affect the circadian systems of heterothermic mammals, including hibernators, more strongly than those of normothermic species. It is suggested that behavioral and physiological adjustments to the environmental conditions play an important role for mammalian circadian systems to respond to temperature changes as a zeitgeber.  相似文献   

7.
The efficacy of photoperiod as a zeitgeber for entrainment of circannual body weight and estrous rhythms was tested in female golden-mantled ground squirrels maintained for 3 or more years in either a simulated natural photoperiod (SNP) or a fixed LD 14:10 photoperiod (FP). The role of the retinohypothalamic tract--suprachiasmatic nucleus (RHT-SCN) projection in photic entrainment was assessed in animals that sustained destruction of the SCN (SCNX). Circannual rhythms were lengthened by the SNP as compared to the FP. Mean periods (tau's) for neurologically intact animals in the third year of testing were 49.6 +/- 0.3 weeks and 43.1 +/- 1.2 weeks (p less than 0.001) for the SNP and FP groups, respectively; furthermore, 56% and 7% of animals in these groups had tau's not significantly different from 365 days (p less than 0.005), and within-group variability was lower for SNP than for FP squirrels (p less than 0.01). SCNX squirrels differed from animals with the SCN intact (SCNC), as evidenced by higher within-group variability (p less than 0.001); only 29% of SCNX squirrels had tau's not different from 365 days (p less than 0.03 compared to the SCNC group). The coupling between estrous and body weight rhythms that was evident in SCN-intact SNP and FP squirrels was disrupted in SCNX animals. The RHT-SCN pathway is implicated in entrainment and in maintenance of normal phase relations among the several circannual rhythms. In a second experiment, female squirrels were maintained for 2.5 years in an accelerated SNP that compressed two normal annual photocycles into each calendar year. Of 12 squirrels, 3 had tau's that did not differ significantly from 6 months; 6 had tau's equivalent to 12 months; and 3 had tau's significantly different from both 6 months and 12 months. The data suggest that photoperiod is a major zeitgeber for entrainment of golden-mantled ground squirrels circannual rhythms.  相似文献   

8.
Early environmental conditions may affect the development and manifestation of circadian rhythms. This study sought to determine whether the maintenance of rats under different T-cycles during lactation influences the subsequent degree of dissociation of the circadian rhythms of motor activity and core body temperature. Two groups of 22 day-old Wistar rats were kept after weaning under T-cycles of 22 h (T22) or 23 h (T23) for 70 days. Subsequently, they were kept in constant darkness (DD). Half of the animals in each group were born and reared under these experimental conditions, while the other half were reared until weaning under 24 h LD cycles (T24). Rats transferred from T24 to T22 or T23 showed two circadian components in motor activity and temperature, one entrained by light and the other free-running. In T22, there was also desynchronization between temperature and motor activity. Rats submitted to T23 from birth showed higher stability of the 23 h component than rats transferred from T24 to T23 after weaning. However, in comparison to rats born under T24 and subsequently changed to T22, animals submitted to T22 from birth showed shorter values of the period of the non-light-dependent component during T22, more aftereffects when transferred to DD, and a lack of desynchronization between motor activity and temperature. The results suggest that T-cycles in the early environment may modify overt rhythms by altering the internal coupling of the circadian pacemaker.  相似文献   

9.
1. Zeitgebers for circannual rhythms have been elusive. Demonstration that an external factor is a zeitgeber requires proof of a phase-shift that endures for several years. 2. The California ground squirrel (Spermophilus beecheyi) is an ideal subject. Many features of behavior have circannual rhythms of which change in mass is the easiest to measure. The squirrels thrive in captivity for up to 10 years. The squirrels were kept in individual cages in an air conditioned room, fed lab chow ad lib, and weighed twice a month. They were exposed to a 6-month phase shift of (a) length of day (b) seasonal change in temperature, (c) both, (d) seasonal cycle of irradiance. 3. The squirrels maintained circannual rhythms for up to 9 years. Entrainment was evident only by squirrels exposed to seasonal change in irradiance.  相似文献   

10.
Circadian rhythms of wheel-running activity of the antelope ground squirrel (Ammospermophilus leucurus) were entrained by light-dark cycles (LD: 100 1x vs total darkness) with periods (T) between ca 23.75 and 24.75 hr. Two 1-hr light pulses per cycle ('skeleton photoperiods') with T = 24.25 hr as well as one 1-hr light pulse per cycle with Ts of 23.75 and 24.25 hr were effective in entraining the circadian activity rhythms in at least 50% of the antelope ground squirrels. Phase and period responses to single 1-hr light pulses were measured which depend on the initial phase and period of the rhythm. It is concluded that discrete (phasic) light input contributes to the mechanism of entrainment to LD cycles in diurnal rodents.  相似文献   

11.
We tested whether prevention of hibernation in ground squirrels by midwinter exposure to high ambient temperatures influenced timing of the spring phase of reproductive maturation and the phase and period of subsequent circannual rhythms of reproduction and body mass. Exposing hibernating adult male Spermophilus lateralis to 30 degrees C for 6 weeks beginning December 4 advanced the timing of testicular recrudescence by 4-5 weeks, compared to controls left at 4 degrees C. Males exposed to 30 degrees C for 6 weeks beginning at the average time of spontaneous end of hibernation (January 15) reached reproductive maturation at a time intermediate to those of controls and of the December 4 experimental group. However, neither the date of the subsequent fall's body mass peak, the date of the next year's reproductive maturation, nor the periods of circannual rhythms of body mass and reproduction differed among groups. Premature interruption of hibernation appears to allow early expression of reproduction, but does not affect the underlying timing mechanism.  相似文献   

12.
European ground squirrels (Spermophilus citellus) in outside enclosures show suppressed circadian rhythmicity in body temperature patterns during the first days of euthermia after hibernation. This may reflect either gradual reappearance of circadian rhythmicity following suppressed functioning of the circadian system during hibernation, or it may reflect transient days during re-entrainment of the circadian system which, during hibernation, has drifted out of phase with the environmental light-dark cycle. Here we report that animals kept under continuous dim light conditions also showed absence of circadian rhythmicity in activity and body temperature in the first 5-15 days after hibernation. After post-hibernation arrhythmicity, spontaneous circadian rhythms re-appeared gradually and increased daily body temperature range. Numbers of arginine-vasopressin immunoreactive neurons in the suprachiasmatic nuclei correlated positively with individual circadian rhythmicity and increased gradually over time after hibernation. Furthermore, circadian rhythmicity was enhanced rather than suppressed after exposure to a light-dark cycle but not after a single 1-h light pulse (1,700 lux). The results support the view that the functioning of the circadian system in the European ground squirrel is suppressed during hibernation at low temperatures and that it requires several days of euthermia to resume its summer function.  相似文献   

13.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel (Funambulus pennanti). Palm squirrels showed strongly diurnal locomotor activity rhythms (? 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

14.
Summary Ground squirrels, show circannual cycles with periods normally less than a year when kept under laboratory conditions. The way in which environmental factors synchronize these cycles with the geophysical year under natural conditions is not known. We tested the possibility that cold temperatures can cause long-term phase delays in circannual cycles of thirteen-lined ground squirrels.Two groups of animals were kept in the cold (4 °C) for either 8.5 or 13 months, after which they were returned to the warm (21 °C) and kept there until they had completed at least one additional cycle. A third group was kept in the warm for the entire experiment. Most of the males in the cold room groups became arrested in the spring phase of their cycles while they were in cold. When returned to the warm, these males resumed cycling. When animals showed prolonged spring phases, their cycles were phase-delayed and continued to reflect this delay even after they were returned to the warm. Both body weight cycles and molt cycles were delayed. In contrast to the males in the cold room, none of the females in the cold room groups and none of the warm room animals of either sex showed this response.Our results demonstrate that cold temperatures can phase-delay both body weight and molt cycles and that the spring phase is a critical stage in this effect. We suggest that spring temperatures are largely responsible for the seasonal synchronization of circannual cycles in ground squirrels and are, therefore, a possible Zeitgeber for these cycles.  相似文献   

15.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel ( Funambulus pennanti ). Palm squirrels showed strongly diurnal locomotor activity rhythms (~ 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

16.
In mammals, the circadian master clock generates daily rhythms of body temperature (T(b)) that act to entrain rhythms in peripheral circadian oscillators. The persistence and function of circadian rhythms during mammalian hibernation is contentious, and the factors that contribute to the reestablishment of rhythms after hibernation are unclear. We collected regular measures of core T(b) (every 34 min) and ambient light conditions (every 30 s) before, during, and following hibernation in free-living male arctic ground squirrels. Free-running circadian T(b) rhythms at euthermic levels of T(b) persisted for up to 10 d in constant darkness after animals became sequestered in their hibernacula in fall. During steady state torpor, T(b) was constant and arrhythmic for up to 13 d (within the 0.19°C resolution of loggers). In spring, males ended heterothermy but remained in their burrows at euthermic levels of T(b) for 22-26 d; patterns of T(b) were arrhythmic for the first 10 d of euthermia. One of four squirrels exhibited a significant free-running T(b) rhythm (τ = 22.1 h) before emergence; this squirrel had been briefly exposed to low-amplitude light before emergence. In all animals, diurnal T(b) rhythms were immediately reestablished coincident with emergence to the surface and the resumption of surface activity. Our results support the hypothesis that clock function is inhibited during hibernation and reactivated by exposure to light, although resumption of extended surface activity does not appear to be necessary to reinitiate T(b) cycles.  相似文献   

17.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

18.
Endogenous circannual clocks are found in many long-lived organisms, but are best studied in mammal and bird species. Circannual clocks are synchronized with the environment by changes in photoperiod, light intensity and possibly temperature and seasonal rainfall patterns. Annual timing mechanisms are presumed to have important ultimate functions in seasonally regulating reproduction, moult, hibernation, migration, body weight and fat deposition/stores. Birds that live in habitats where environmental cues such as photoperiod are poor predictors of seasons (e.g. equatorial residents, migrants to equatorial/tropical latitudes) rely more on their endogenous clocks than birds living in environments that show a tight correlation between photoperiod and seasonal events. Such population-specific/interspecific variation in reliance on endogenous clocks may indicate that annual timing mechanisms are adaptive. However, despite the apparent adaptive importance of circannual clocks, (i) what specific adaptive value they have in the wild and (ii) how they function are still largely untested. Whereas circadian clocks are hypothesized to be generated by molecular feedback loops, it has been suggested that circannual clocks are either based upon (i) a de-multiplication ('counting') of circadian days, (ii) a sequence of interdependent physiological states, or (iii) one or more endogenous oscillators, similar to circadian rhythms. We tested the de-multiplication of days (i) versus endogenous regulation hypotheses (ii) and (iii) in captive male and female house sparrows (Passer domesticus). We assessed the period of reproductive (testicular and follicular) cycles in four groups of birds kept either under photoperiods of LD 12L:12D (period length: 24h), 13.5L:13.5D (27 h), 10.5L:10.5D (23 h) or 12D:8L:3D:1L (24-h skeleton photoperiod), respectively, for 15 months. Contrary to predictions from the de-multiplication hypothesis, individuals experiencing 27-h days did not differ (i.e. did not have longer) annual reproductive rhythms than individuals from the 21- or 24-h day groups. However, in line with predictions from endogenous regulation, birds in the skeleton group had significantly longer circannual period lengths than all other groups. Birds exposed to skeleton photoperiods experienced fewer light hours per year than all other groups (3285 versus 4380) and had a lower daily energy expenditure, as tested during one point of the annual cycle using respirometry. Although our results are tantalizing, they are still preliminary as birds were only studied over a period of 15 months. Nevertheless, the present data fail to support a 'counting of circadian days' and instead support hypotheses proposing whole-organism processes as the mechanistic basis for circannual rhythms. We propose a novel energy turnover hypothesis which predicts a dependence of the speed of the circannual clock on the overall energy expenditure of an organism.  相似文献   

19.
An endogenous circannual rhythm drives the seasonal reproductive cycle of a broad spectrum of species. This rhythm is synchronized to the seasons (i.e., entrained) by photoperiod, which acts by regulating the circadian pattern of melatonin secretion from the pineal gland. Prior work has revealed that melatonin patterns secreted in spring/summer entrain the circannual rhythm of reproductive neuroendocrine activity in sheep, whereas secretions in winter do not. The goal of this study was to determine if inability of the winter-melatonin pattern to entrain the rhythm is due to the specific melatonin pattern secreted in winter or to the stage of the circannual rhythm at that time of year. Either a summer- or a winter-melatonin pattern was infused for 70 days into pinealectomized ewes, centered around the summer solstice, when an effective stimulus readily entrains the rhythm. The ewes were ovariectomized and treated with constant-release estradiol implants, and circannual cycles of reproductive neuroendocrine activity were monitored by serum LH concentrations. Only the summer-melatonin pattern entrained the circannual reproductive rhythm. The inability of the winter pattern to do so indicates that the mere presence of a circadian melatonin pattern, in itself, is insufficient for entrainment. Rather, the characteristics of the melatonin pattern, in particular a pattern that mimics the photoperiodic signals of summer, determines entrainment of the circannual rhythm of reproductive neuroendocrine activity in the ewe.  相似文献   

20.
Female squirrels were injected at birth with 50 or 1000 micrograms testosterone propionate (TP); control males and females were treated with oil vehicle. Squirrels were gonadectomized at 47 days of age. Body mass was recorded weekly and plasma luteinizing hormone (LH) was determined once monthly over the next year. Marked annual cycles in body mass were manifested by 30 out of 31 squirrels. Peak body mass and peak-to-trough differences were greater for control male and TP-female squirrels than for control female squirrels. Trough body weights did not differ among the groups. Luteinizing hormone was detectable in all male and most androgenized females but not in any control female squirrels during the first 4 mo after gonadectomy. Peak LH values were significantly greater for control male than for control female squirrels and were not influenced by neonatal androgenization in females. Testosterone propionate treatment also did not affect sex differences in timing of LH peaks or the total number of months in which LH was detectable. We conclude that testicular hormones secreted during the early postnatal period induce sex differences in the circannual pattern of weight change and some aspects of LH secretion. Complete masculinization, however, either requires more extensive action of gonadal hormones, perhaps both pre- and postnatally, or occurs through some androgen-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号