共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosophila melanogaster hsp26 gene. 总被引:7,自引:4,他引:7
下载免费PDF全文

The hsp26 gene of Drosophila melanogaster is expressed in six tissues during development and in a tissue-general response to heat shock. To be able to compare tissue-specific and heat-induced mechanisms of hsp26 expression, we have begun an analysis of the sequences involved in the spermatocyte-specific expression of the hsp26 gene by using germ line transformation. hsp26 mRNA synthesized in the spermatocytes has the same start site as sites previously demonstrated for nurse cell-specific and heat-induced mRNAs. Three regions of the hsp26 gene (nucleotides -351 to -135, -135 to -85, and +11 to +632) were able to stimulate spermatocyte-specific expression when fused with promoter sequences (nucleotides -85 to +11) that alone were insufficient to stimulate expression. These stimulatory regions appear to contain elements that provide redundant functions. While each region was able to stimulate expression independently, the deletion of any one region from a construct was without consequence as long as another compensatory region(s) was still present. There must reside, at a minimum, two independent spermatocyte-specifying elements within the sequences that encompass the three stimulatory regions and the promoter. At least one element is contained within sequences from -351 to -48. This region, in either orientation, can stimulate spermatocyte-specific expression from a heterologous promoter. A second element must reside in sequences from -52 to +632, since these sequences are also sufficient to direct spermatocyte-specific expression. 相似文献
4.
The phases of the reporter gene expression controlled by different fragments of the string (stg) gene regulatory region were determined in Drosophila neuroblasts by detection of beta-galactosidase activity and radioautography. In the D10 and D22 lines carrying the constructs pstg beta-E4.9 and pstg beta-E5.3, respectively, the reporter gene activity was detected in the G1 phase of the cell cycle. In the D12 and D20 lines (pstg beta-E6.4 and pstg beta-E2.6), no periodic expression was observed. The regulatory regions of the stg from lines D10 and D22 and that of Drosophila gene cyclin D shared consensus aagaactttg, which was also expressed in the G1 phase. The phase-specific expression of the cell-cycle genes was compared in a model for the mitotic-wave cells of eye imaginal disk and neuroblasts of the nerve ganglia. 相似文献
5.
6.
Sempere LF Dubrovsky EB Dubrovskaya VA Berger EM Ambros V 《Developmental biology》2002,244(1):170-179
In Caenorhabditis elegans, the heterochronic pathway controls the timing of developmental events during the larval stages. A component of this pathway, the let-7 small regulatory RNA, is expressed at the late stages of development and promotes the transition from larval to adult (L/A) stages. The stage-specificity of let-7 expression, which is crucial for the proper timing of the worm L/A transition, is conserved in Drosophila melanogaster and other invertebrates. In Drosophila, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) control the timing of the transition from larval to pupal to adult stages. To test whether let-7 expression is regulated by ecdysone in Drosophila, we used Northern blot analysis to examine the effect of altered ecdysone levels on let-7 expression in mutant animals, organ cultures, and S2 cultured cells. Experiments were conducted to test the role of Broad-Complex (BR-C), an essential component in the ecdysone pathway, in let-7 expression. We show that ecdysone and BR-C are required for let-7 expression, indicating that the ecdysone pathway regulates the temporal expression of let-7 in Drosophila. These results demonstrate an interaction between steroid hormone signaling and the heterochronic pathway in insects. 相似文献
7.
Regulatory elements controlling expression of the Drosophila homeotic gene fork head. 总被引:2,自引:2,他引:2
下载免费PDF全文

The region-specific homeotic gene fork head (fkh) is expressed and required in a variety of tissues of the developing Drosophila embryo. In order to identify the cis regulatory elements directing the complex spatio-temporal expression pattern of fkh, we have studied the subpatterns directed by defined fragments of fkh genomic DNA. These experiments enabled us to distinguish separate regulatory elements specific for the different expression domains of fkh. In addition, our analysis revealed several unexpected features such as the redundancy of regulatory elements and the overlap of regulatory elements with the transcribed regions of other genes. Moreover, the separation of normally contiguous elements effecting expression in the posterior terminal fkh domain appears to lead to novel expression domains which do not correspond to known developmental units in the embryo. 相似文献
8.
9.
10.
11.
12.
Expression of the lacZ reporter gene under the control of five deletion derivatives of the copia regulatory region including the 5' long terminal repeat (LTR) and the 5' untranslated region (UTR) was assayed in the testes of transgenic Drosophila melanogaster males (larvae and imago). The full-length copia regulatory region (LTR + UTR) ensured expression of the reporter gene in testes of both larvae and adult males. Deletion of UTR or 3' end of LTR increased lacZ expression in the testes, whereas deletion of the 5' end of LTR increased it. This indicated that a positive regulator of copia expression is at the 5' end of LTR and that negative regulators are at the 3' end of LTR and in UTR. The effects of the fragments of the copia regulatory region on reporter gene expression in the testes in vivo did not completely coincide with the effects observed earlier in cultured cells. We suggest that this difference is due to different regulation of expression of the fusion constructs integrated into chromatin as compared to their transient expression. 相似文献
13.
14.
The tissue-specific expression patterns of glucose dehydrogenase (GLD) exhibit a high degree of inter specific variation in the adult reproductive tract among the species in the genus Drosophila. We chose to focus on the evolution of GLD expression and the evolution of the Gld promoter in seven closely related species in the mela-nogaster subgroup as a means of elucidating the relationship of changes in cis-acting regulatory elements in the Gld promoter region with changes in tissue-specific expression. Although little variation in tissue-specific patterns of GLD was found in nonreproductive tissues during development, a surprisingly high level of variation was observed in the expression of GLD in both developing and ma-ture reproductive organs. In some cases this variation is correlated with changes in sequence elements in the Gld promoter which were previously shown to direct tissue-specific expression in the reproductive tract. In particular D. teissieri adult males do not express GLD in their ejaculatory ducts, atypical of the melanogaster subgroup species. The Gld promoter region of D. teissieri specifically lacks all three of the TTAGA regulatory elements present in D. melanogaster. The TTAGA elements were previously shown to direct reporter gene expression to the ejaculatory duct. Together these data suggest the absence or presence of the TTAGA elements may be responsible for variation in the absence or presence of GLD in the ejaculatory duct among species. © 1994 Wiley-Liss, Inc. 相似文献
15.
Ecdysteroid-regulated gene expression in Drosophila melanogaster 总被引:6,自引:0,他引:6
O Pongs 《European journal of biochemistry》1988,175(2):199-204
16.
17.
We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. 相似文献
18.
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex. 相似文献
19.
Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. I. Dependence upon ecdysone concentration 总被引:16,自引:0,他引:16
M Ashburner 《Developmental biology》1973,35(1):47-61
The response of the three major classes of puff in salivary gland chromosomes of larval Drosophila melanogaster to varying β-ecdysone concentrations has been studied in in vitro cultured glands. Two (25AC and 68C) of the intermolt puffs regress at a rate dependent upon the hormone concentration. Three rapidly reacting puffs (23E, 74EF and 75B) respond in a graded way to β-ecdysone concentrations over a range of at least 600 ×. In contrast, five late-reacting puffs (62E, 78D, 22C, 63E, and 82F) do not respond below 5 × 10?8M and at 2.5 × 10?7M react maximally. The 50% response of the early puff sites 74EF and 75B and of the late puff sites occurs at 1 × 10?7M. Two points are discussed in detail: whether ecdysone is necessary as a sustained stimulus or only as a trigger for the sequential puffing response and an evaluation of the absolute ecdysone concentration necessary for induction. 相似文献
20.
Expression of the Bacillus subtilis recA gene is induced following DNA damage as well as during the development of the competent state. DNA damage-induction of the recA gene occurs by a RecA-dependent mechanism, whereas competence-induction occurs by a RecA-independent mechanism. To examine the molecular mechanisms that control the expression of the recA gene, a deletion analysis of the recA promoter region was performed. A regulatory region that is required for repression of recA expression was identified upstream of the recA promoter. Deletion of this regulatory region derepressed expression and abolished damage-induction of the recA promoter. Within this region are sequences similar to the consensus sequence that has been identified within DNA damage-inducible promoter regions of other B subtilis genes. Another regulatory region was identified that is required for the RecA-independent, competence-specific induction of the recA gene. Deletion of these sequences significantly reduced competence-induction of the recA promoter. 相似文献