首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For successful splicing in dicot plants the only recognised intron requirements are 5 and 3 splice sites and AU-rich sequences. We have investigated further the importance of AU-rich elements by analyzing the splicing of an AU-rich antisense intron sequence. Activation of cryptic splice sites on either side of the AU-rich sequence permitted the efficient removal of this essentially non-intron sequence by splicing. This splicing event not only confirms the importance of AU-rich sequences but also has implications for the evolution of interrupted genes and the expression of heterologous genes in transgenic plants.  相似文献   

2.
3.
C R King  J Piatigorsky 《Cell》1983,32(3):707-712
The eye lens contains a structural protein (alpha-crystallin), composed of two homologous primary gene products, alpha A2 and alpha B2. In certain rodents, there is another minor alpha-crystallin polypeptide, alpha Ains, which is identical to alpha A2 except for a 22 amino acid insert between residues 63 and 64 of the alpha A2 chain. Here we show that the mouse contains a single alpha A-crystallin gene, which has a 1376 bp intron separating codons 63 and 64 of the alpha A2-crystallin mRNA. A sequence encoding a 23 amino acid insert peptide was found 266 bp into the intron. The nucleotide borders of this sequence deviate from the AGGT consensus sequence. The DNA sequence encoding the insert peptide hybridizes to a cytoplasmic 14S RNA, demonstrating that it is transcribed in the lens. We propose that the murine alpha A2-crystallin gene generates both the alpha A2 and the alpha Ains mRNAs by alternative splicing.  相似文献   

4.
About two years ago it was first shown that in the human virus, Adenovirus 2, non-consecutive DNA segments were next to each other on the messenger RNA (mRNA) chain. Further investigation showed that the newly synthesized precursor mRNA contains the same, full DNA sequence. Only at a later stage a section (or sections) of the messenger loops out and splicing, followed by ligation (joining) of the ends, takes place. Since then it was shown that most eukaryotic mRNAs undergo splicing.We suggest here a new structural approach for the splicing phenomenon and location of splicing sites. It emphasizes spatial proximity, orientation and stability incurred by secondary and tertiary structure around and sequence homology at the splicing sites.Based on the above spatial considerations, two and three dimensional models were built for the known splicing sites in the small mRNA of the primate virus SV40, denoted 16S mRNA, which is transcribed late in the viral life cycle and for the variable region of the mouse immunoglobulin light chain.Models similar to the former were also constructed for other regions of SV40 and specific predictions were made for splicings in the SV40 late 19S and for the early synthesized mRNAs. These were recently verified.  相似文献   

5.
Communication between U1 and U2 snRNPs is critical during pre-spliceosome assembly; yet, direct connections have not been observed. To investigate this assembly step, we focused on Prp5, an RNA-dependent ATPase of the DExD/H family. We identified homologs of Saccharomyces cerevisiae Prp5 in humans (hPrp5) and Schizosaccharomyces pombe (SpPrp5), and investigated their interactions and function. Depletion and reconstitution of SpPrp5 from extracts demonstrate that ATP binding and hydrolysis by Prp5 are required for pre-spliceosome complex A formation. hPrp5 and SpPrp5 are each physically associated with both U1 and U2 snRNPs; Prp5 contains distinct U1- and U2-interacting domains that are required for pre-spliceosome assembly; and, we observe a Prp5-associated U1/U2 complex in S. pombe. Together, these data are consistent with Prp5 being a bridge between U1 and U2 snRNPs at the time of pre-spliceosome formation.  相似文献   

6.
We have detected a surprising heterogeneity among human spliceosomal U1 small nuclear RNA (snRNA). Most interestingly, we have identified three U1 snRNA variants that lack complementarity to the canonical 5' splice site (5'SS) GU dinucleotide. Furthermore, we have observed heterogeneity among the identified variant U1 snRNA genes caused by single nucleotide polymorphism (SNP). The identified snRNAs were ubiquitously expressed in a variety of human tissues representing different stages of development and displayed features of functional spliceosomal snRNAs, i.e., trimethylated cap structures, association with Sm proteins and presence in nuclear RNA-protein complexes. The unanticipated heterogeneity among spliceosomal snRNAs could contribute to the complexity of vertebrates by expanding the coding capacity of their genomes.  相似文献   

7.
Mohr S  Stryker JM  Lambowitz AM 《Cell》2002,109(6):769-779
The Neurospora crassa CYT-18 protein, the mitochondrial tyrosyl-tRNA synthetase, functions in splicing group I introns by inducing formation of the catalytically active RNA structure. Here, we identified a DEAD-box protein (CYT-19) that functions in concert with CYT-18 to promote group I intron splicing in vivo and vitro. CYT-19 does not bind specifically to group I intron RNAs and instead functions as an ATP-dependent RNA chaperone to destabilize nonnative RNA structures that constitute kinetic traps in the CYT-18-assisted RNA-folding pathway. Our results demonstrate that a DExH/D-box protein has a specific, physiologically relevant chaperone function in the folding of a natural RNA substrate.  相似文献   

8.
A complex locus on human chromosome 1 brings together sequences homologous to a G protein and two components of the RNA processing machinery of eukaryotic cells. Specifically, the seventh intron of the human Gi3 alpha gene contains a fusion of a partial snRNP E protein pseudogene to a variant U6 snRNA gene. The novel U6 sequence contains nine point mutations and a one nucleotide deletion relative to the major U6 genes from humans. Unlike all other vertebrate U6 genes characterized to date, the variant U6 gene is efficiently transcribed by RNA polymerase III even in the absence of all natural flanking sequences. The union of elements from the signal transduction pathway and the RNA processing machinery suggests the possibility of functional interplay.  相似文献   

9.
The U1 small nuclear ribonucleoprotein (U1 snRNP) binds to the pre-mRNA 5' splice site (ss) at early stages of spliceosome assembly. Recruitment of U1 to a class of weak 5' ss is promoted by binding of the protein TIA-1 to uridine-rich sequences immediately downstream from the 5' ss. Here we describe a molecular dissection of the activities of TIA-1. RNA recognition motifs (RRMs) 2 and 3 are necessary and sufficient for binding to the pre-mRNA. The non- consensus RRM1 and the C-terminal glutamine-rich (Q) domain are required for association with U1 snRNP and to facilitate its recruitment to 5' ss. Co-precipitation experiments revealed a specific and direct interaction involving the N-terminal region of the U1 protein U1-C and the Q-rich domain of TIA-1, an interaction enhanced by RRM1. The results argue that binding of TIA-1 in the vicinity of a 5' ss helps to stabilize U1 snRNP recruitment, at least in part, via a direct interaction with U1-C, thus providing one molecular mechanism for the function of this splicing regulator.  相似文献   

10.
Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression.  相似文献   

11.
Intronic G triplets are frequently located adjacent to 5' splice sites in vertebrate pre-mRNAs and have been correlated with splicing efficiency and specificity via a mechanism that activates upstream 5' splice sites in exons containing duplicated sites (26). Using an intron dependent upon G triplets for maximal activity and 5' splice site specificity, we determined that these elements bind U1 snRNPs via base pairing with U1 RNA. This interaction is novel in that it uses nucleotides 8 to 10 of U1 RNA and is independent of nucleotides 1 to 7. In vivo functionality of base pairing was documented by restoring activity and specificity to mutated G triplets through compensating U1 RNA mutations. We suggest that the G-rich region near vertebrate 5' splice sites promotes accurate splice site recognition by recruiting the U1 snRNP.  相似文献   

12.
13.
The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase, which is required for the splicing of its coding intron, also controls the splicing process of the aI4 intron. We propose a scenario for the evolution of these intronic proteins that relies on a switch from DNA endonuclease to RNA maturase activity.  相似文献   

14.
15.
The five spliceosomal snRNAs (U1, U2, U4, U5, and U6) undergo an ordered sequence of conformational changes as mRNA splicing progresses. We have shown that an antisense RNA oligonucleotide complementary to U5 snRNA induces a novel U1/U4/U5 complex that may be a transitional stage in the displacement of U1 from the 5' splice site by U5. Here we identify a novel site-specific crosslink between the 5' end of U1 and the invariant loop of U5 snRNA. This crosslink can be induced in nuclear extract by an antisense oligonucleotide directed against U5 snRNA, but can also be detected during an early step of the splicing reaction in the absence of oligonucleotide. Our data indicate proximity between U1 and U5 snRNPs before the first catalytic step of splicing, and may suggest that U1 helps to direct U5 to the 5' splice site.  相似文献   

16.
Computer analyses of the entire GenBank database were conducted to examinecorrelation between splicing sites and codon positions in reading frames.Intron insertion patterns (i.e., splicing site locations with respect tocodon positions) have been analyzed for all of the 74 codons of all theeukaryote taxonomic groups: primates, rodents mammals, vertebrates,invertebrates, and plants. We found that reading frames are interrupted byan intron at a codon boundary (as opposed to the middle of a codon)significantly more often than expected. This observation is consistent withthe exon shuffling hypothesis, because exons that end at codon boundariescan be concatenated without causing a frame shift and thus areevolutionarily advantageous. On the other hand, when introns interrupt atthe middles of codons, they exist in between the first and second basesmuch more frequently than between the second and third bases, despite thefact that boundaries between the first and second bases of codons aregenerally far more important than those between the second and third bases.The reason for this is not clear and yet to be explained. We also show thatthe length of an exon is a multiple of 3 more frequently than expected.Furthermore, the total length of two consecutive exons is also morefrequently a multiple of 3. All the observations above are consistent withresults recently published by Long, Rosenberg, and Gilbert (1995).  相似文献   

17.
Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.  相似文献   

18.
The group I intron (AnCOB) of the mitochondrial apocytochrome b gene from Aspergillus nidulans encodes a bi-functional maturase protein that is also a DNA endonuclease. Although the AnCOB intron self-splices, the encoded maturase protein greatly facilitates splicing, in part, by stabilizing RNA tertiary structure. To determine their role in self-splicing and in protein-assisted splicing, several peripheral RNA sub-domains in the 313 nucleotide intron were deleted (P2, P9, P9.1) or truncated (P5ab, P6a). The sequence in two helices (P2 and P9) was also inverted. Except for P9, the deleted regions are not highly conserved among group I introns and are often dispensable for catalytic activity. Nevertheless, despite the very tight binding of AnCOB RNA to the maturase and the high activity of the bimolecular complex (the rate of 5' splice-site cleavage was >20 min(-1) with guanosine as the cofactor), the intron was surprisingly sensitive to these modifications. Several mutations inactivated splicing completely and virtually all impaired splicing to varying degrees. Mutants containing comparatively small deletions in various regions of the intron significantly decreased binding affinity (generally >10(4)-fold), indicating that none of the domains that remained constitutes the primary recognition site of the maturase. The data argue that tight binding requires tertiary interactions that can be maintained by only a relatively intact intron RNA, and that the binding mechanism of the maturase differs from those of two other well-characterized group I intron splicing factors, CYT-18 and Cpb2. A model is proposed in which the protein promotes widespread cooperative folding of an RNA lacking extensive initial tertiary structure.  相似文献   

19.
20.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder associated with gastrointestinal polyposis and an increased cancer risk. PJS is caused by germline mutations in the tumor suppressor gene LKB1. One such mutation, IVS2+1A>G, alters the second intron 5' splice site, which has sequence features of a U12-type AT-AC intron. We report that in patients, LKB1 RNA splicing occurs from the mutated 5' splice site to several cryptic, noncanonical 3' splice sites immediately adjacent to the normal 3' splice site. In vitro splicing analysis demonstrates that this aberrant splicing is mediated by the U12-dependent spliceosome. The results indicate that the minor spliceosome can use a variety of 3' splice site sequences to pair to a given 5' splice site, albeit with tight constraints for maintaining the 3' splice site position. The unusual splicing defect associated with this PJS-causing mutation uncovers differences in splice-site recognition between the major and minor pre-mRNA splicing pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号