首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative modes of binding by U2AF65 at the polypyrimidine tract   总被引:1,自引:0,他引:1  
During initial recognition of an intron in pre-mRNA, the 3' end of the intron is bound by essential splicing factors. Notably, the consensus RNA sequences bound by these proteins are highly degenerate in humans. This raises the question of 3' splicing factor function in introns lacking canonical binding sites. Investigating the introns of the model organism Neurospora crassa revealed a different organization at the 3' end of the intron compared to most eukaryotic organisms. The predicted branch point sequences of Neurospora introns are much closer to the 3' splice site compared to those in human introns. In addition, Neurospora introns lack the canonical polypyrimidine tract found at the end of introns in most eukaryotic organisms. The large subunit of the U2 snRNP associated factor (U2AF65), which is essential for splicing of human introns and specifically recognizes the polypyrimidine tract, is also present in Neurospora. We show that Neurospora U2AF65 binds RNA with low affinity and specificity, apparently evolving with its disappearing binding site. The arginine/serine rich domain at the N-terminus of Neurospora U2AF65 regulates its RNA binding. We find that this regulated binding can be recapitulated in human U2AF65 which has been mutated to decrease both affinity and overall charge. Finally, we show that the addition of the small U2AF subunit (U2AF35) to U2AF65 with weakened RNA binding affinity significantly enhances the affinity of the resulting U2AF heterodimer.  相似文献   

2.
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.  相似文献   

3.
4.
B Ruskin  J M Greene  M R Green 《Cell》1985,41(3):833-844
The excised introns of pre-mRNAs and intron-containing splicing intermediates are in a lariat configuration in which the 5' end of the intron is linked by a 2'-5' phosphodiester bond (RNA branch) to a single adenosine residue near the 3' end of the intron. To determine the role of the specific sequence surrounding the RNA branch, we have mutated the branch point sequence of the human beta-globin IVS1. Pre-mRNAs lacking the authentic branch point sequence are accurately spliced in vitro; processing of the mutant pre-mRNAs generates RNA lariats due to the activation of cryptic branch points within IVS1. The cryptic branch points always occur at adenosine residues, but the sequences surrounding the branched nucleotide vary. Regardless of the type of mutation or the sequences remaining within IVS1, the cryptic branch points are 22 to 37 nucleotides upstream of the 3' splice site. These results suggest that RNA branch point selection is primarily based on a mechanism that measures the distance from the 3' splice site.  相似文献   

5.
In virtually all of the 200 group I introns sequenced thus far, the specificity of 5' splice-site cleavage is determined by a basepair between a uracil base at the end of the 5' exon and a guanine in an intron guide sequence which pairs with the nucleotides flanking the splice-site. It has been reported that two introns in the cytochrome oxidase subunit I gene of Aspergillus nidulans and Podospora anserina are exceptions to this rule and have a C.G basepair in this position. We have confirmed the initial reports and shown for one of them that RNA editing does not convert the C to a U. Both introns autocatalytically cleave the 5' splice-site. Mutation of the C to U in one intron reduces the requirement for Mg2+ and leads to an increase in the rate of cleavage. As the C base encodes a highly conserved amino acid, we propose that it is selected post-translationally at the level of protein function, despite its inferior splicing activity.  相似文献   

6.
The introns of Drosophila pre-mRNAs have been analysed for conserved internal sequence elements near the 3' intron boundary similar to the T-A-C-T-A-A-C in yeast introns and the C/T-T-A/G-A-C/T in introns of other organisms. Such conserved internal elements are the 3' splice signals recognized in intron splicing. In the lariat splicing mechanism, the G at the 5' end of an intron joins covalently to the last A of a 3' splice signal to form a branch point in a splicing intermediate. Analysis of 39 published sequences of Drosophila introns reveals that potential 3' splice signals with the consensus C/T-T-A/G-A-C/T are present in 18 cases. In 17 of the remaining cases signals are present which vary from this consensus just in the middle or last position. In Drosophila introns the 3' splice signal is usually located in a discrete region between 18 and 35 nucleotides upstream from the 3' splice point. We note that the Drosophila small nuclear U2-RNA has sequences complementary to C-T-G-A-T, one variant of the signal, and to C-A-G, one variant of the 3' terminus of an intron. We also note that the absence of any A-G between -3 and -19 from the 3' splice point may be an essential feature of a strong 3' boundary.  相似文献   

7.
Few genes in the divergent eukaryote Trichomonas vaginalis have introns, despite the unusually large gene repertoire of this human-infective parasite. These introns are characterized by extended conserved regulatory motifs at the 5' and 3' boundaries, a feature shared with another divergent eukaryote, Giardia lamblia, but not with metazoan introns. This unusual characteristic of T. vaginalis introns led us to examine spliceosomal small nuclear RNAs (snRNAs) predicted to mediate splicing reactions via interaction with intron motifs. Here we identify T. vaginalis U1, U2, U4, U5, and U6 snRNAs, present predictions of their secondary structures, and provide evidence for interaction between the U2/U6 snRNA complex and a T. vaginalis intron. Structural models predict that T. vaginalis snRNAs contain conserved sequences and motifs similar to those found in other examined eukaryotes. These data indicate that mechanisms of intron recognition as well as coordination of the two catalytic steps of splicing have been conserved throughout eukaryotic evolution. Unexpectedly, we found that T. vaginalis spliceosomal snRNAs lack the 5' trimethylguanosine cap typical of snRNAs and appear to possess unmodified 5' ends. Despite the lack of a cap structure, U1, U2, U4, and U5 genes are transcribed by RNA polymerase II, whereas the U6 gene is transcribed by RNA polymerase III.  相似文献   

8.
9.
Intron lariat formation between the 5' end of an intron and a branchpoint adenosine is a fundamental aspect of the first step in animal and yeast nuclear pre-mRNA splicing. Despite similarities in intron sequence requirements and the components of splicing, differences exist between the splicing of plant and vertebrate introns. The identification of AU-rich sequences as major functional elements in plant introns and the demonstration that a branchpoint consensus sequence was not required for splicing have led to the suggestion that the transition from AU-rich intron to GC-rich exon is a major potential signal by which plant pre-mRNA splice sites are recognized. The role of putative branchpoint sequences as an internal signal in plant intron recognition/definition has been re-examined. Single nucleotide mutations in putative branchpoint adenosines contained within CUNAN sequences in four different plant introns all significantly reduced splicing efficiency. These results provide the most direct evidence to date for preferred branchpoint sequences being required for the efficient splicing of at least some plant introns in addition to the important role played by AU sequences in dicot intron recognition. The observed patterns of 3' splice site selection in the introns studied are consistent with the scanning model described for animal intron 3' splice site selection. It is suggested that, despite the clear importance of AU sequences for plant intron splicing, the fundamental processes of splice site selection and splicing in plants are similar to those in animals.  相似文献   

10.
A yeast ACT1 intron in which both the first and last intron nucleotides are mutated, the /a-c/ intron, splices 10% as well as wild type. We selected for additional cis-acting mutations that improve the splicing of /a-c/ introns and recovered small deletions upstream of the 3' splice site. For example, deletion of nucleotides -9 and -10 upstream of the 3' splice site increased the splicing activity of the /a-c/ intron to 30% that of the wild-type ACT1 intron. To determine if the increased /a-c/ splicing was due to changes in intron spacing or sequence, we made mutations that mimicked the local sequence of the delta-9, -10 deletion without deleting any nucleotides. These mutants also increased /a-c/ splicing, indicating that the increased splicing activity was due to changes in intron sequence. The delta-9, -10 deletion was not allele specific to the /a-c/ intron, and improved the splicing efficiency of many mutant introns with step II splicing defects. To further define the sequences required for improved splicing of mutant introns, we randomized the region upstream of the ACT1 3' splice site. We found that almost all sequence alterations improved the splicing of the /a-c/ intron. We postulate that this sequence near the 3' end of the intron represses the splicing of mutant introns, perhaps by serving as the binding site for a negative splicing factor.  相似文献   

11.
T Tani  Y Takahashi    Y Ohshima 《Nucleic acids research》1992,20(12):2991-2996
U6 small nuclear RNA is one of the spliceosomal RNAs essential for pre-mRNA splicing. Discovery of mRNA-type introns in the highly conserved region of the U6 snRNA genes led to the hypothesis that U6 snRNA functions as a catalytic element during pre-mRNA splicing. The highly conserved region of U6 snRNA has a structural similarity with the catalytic domain of the negative strand of the satellite RNA of tobacco ring spot virus [(-)sTRSV], suggesting that the highly conserved region of U6 snRNA forms the catalytic center. We examined whether synthetic RNAs consisting of the sequence of the highly conserved region of U6 snRNA or various chimeric RNAs between the U6 region and the catalytic RNA of (-)sTRSV could cleave a substrate RNA that can partially base-pair with them and have a GU sequence. Chimeric RNAs with 70 to 83% sequence identity with the conserved region of S. pombe U6 snRNA cleaved the substrate RNA at the 5' side of the GU sequence, which is shared by the 5' end of an intron in a pre-mRNA. We found that the highly conserved region of U6 snRNA and the catalytic domain of (-)sTRSV are strikingly similar in structure to the catalytic core region of the group I self-splicing intron in cyanobacteria. These results suggest that U6 snRNA, (-)sTRSV and the group I self-splicing intron originated from a common ancestral RNA, and support the hypothesis that U6 snRNA catalyzes pre-mRNA splicing reaction.  相似文献   

12.
To probe functions of the U1 small nuclear ribonucleoprotein particle (snRNP) during in vitro splicing, we have used unusual splicing substrates which replace the 5' splice site region of an adenovirus substrate with spliced leader (SL) RNA sequences from Leptomonas collosoma or Caenorhabditis elegans. In agreement with previous results (J.P. Bruzik and J.A. Steitz, Cell 62:889-899, 1990), we find that oligonucleotide-targeted RNase H destruction of the 5' end of U1 snRNA inhibits the splicing of a standard adenovirus splicing substrate but not of the SL RNA-containing substrates. However, use of an antisense 2'-O-methyl oligoribonucleotide that disrupts the first stem of U1 snRNA as well as stably sequestering positions of U1 snRNA involved in 5' and 3' splice site recognition inhibits the splicing of both the SL constructs and the standard adenovirus substrate. The 2'-O-methyl oligoribonucleotide is no more effective than RNase H pretreatment in preventing pairing of U1 with the 5' splice site, as assessed by inhibition of psoralen cross-link formation between the SL RNA-containing substrate and U1. The 2'-O-methyl oligoribonucleotide does not alter the protein composition of the U1 monoparticle or deplete the system of essential splicing factors. Native gel analysis indicates that the 2'-O-methyl oligoribonucleotide inhibits splicing by diminishing the formation of splicing complexes. One interpretation of these results is that removal of the 5' end of U1 inhibits base pairing in a different way than sequestering the same sequence with a complementary oligoribonucleotide. Alternatively, our data may indicate that two elements near the 5' end of U1 RNA normally act during spliceosome assembly; the extreme 5' end base pairs with the 5' splice site, while the sequence or structural integrity of stem I is essential for some additional function. It follows that different introns may differ in their use of the repertoire of U1 snRNP functions.  相似文献   

13.
14.
E Lazar  M Jacob  A Krol    C Branlant 《Nucleic acids research》1982,10(4):1193-1201
A DNA fragment containing a 16 nucleotide sequence mimicking the intron extremities of premessenger RNA aligned as proposed previously (1,2) in a model of splicing mechanism was prepared and used as a probe for accessibility of the 5' extremity of U1 RNA. Hybridization of U1 RNA to the probe under non denaturing conditions and digestion of the hybrid with RNase H revealed that the sequence of U1 RNA which is complementary to the extremities of introns is accessible to hybridization and to enzymes. Therefore, the configuration of isolated U1 RNA satisfies the criteria required for the alignment of introns and further enzymatic reactions of splicing.  相似文献   

15.
16.
Highly conserved sequences at the 5′ splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5′ and 3′ splice sites, and the activation of cryptic U12-dependent branch/3′ splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3′ splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection.  相似文献   

17.
The YAG/ consensus sequence at the 3' end of introns (the slash indicates the location of the 3' splice site) is essential for catalysis of the second step of pre-mRNA splicing. Little is known about the interactions formed by these three nucleotides in the spliceosome. Although previous observations have suggested that the G of the YAG/ interacts with the first nucleotide of the /GUA consensus sequence at the 5' end of the intron, additional interactions have not been identified. Here we report several striking genetic interactions between A+3 of the 5' /GUA with Y-3 of the 3' YAG/ and G50 of the highly conserved ACAGAG motif in U6 snRNA. Two mutations in U6 G50 of the ACAGAG can weakly suppress two mutations in A+3 of the 5' /GUA. This suppression is significantly enhanced upon the inclusion of a specific mutation Y-3 in the 3' YAG/. RNA analysis confirmed that the severe splicing defect observed in A+3 and Y-3 double mutants can be rescued to near wild-type levels by the mutations in U6 G50. The contributions of each mutation to the genetic interaction and the strong position specificity of suppression, combined with previous findings, support a model in which the 5' /GUA and the GAG of U6 function in binding the 3' YAG/ during the second catalytic step.  相似文献   

18.
Irimia M  Roy SW 《PLoS genetics》2008,4(8):e1000148
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.  相似文献   

19.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

20.
To investigate soluble factors involved in pre-messenger RNA splicing we have fractionated nuclear extract by simple centrifugation to produce a supernatant pellet pair. Factors larger than 15S including U2, U4, U5, and U6 snRNPs fractionate with the pellet; U1 snRNPs distribute equally in pellet and supernatant. Each fraction is individually incompetent for splicing and spliceosome assembly; mixing restores wild type activity and assembly. The pellet fraction directs an aberrant assembly pathway in which proper 3', but improper 5' splice site recognition occurs. Complexes formed with the pellet fraction are distinguishable from wild-type complexes using native gel electrophoresis. Pellet complexes contain U1 snRNP antigens and their formation requires ATP, U1 snRNPs, U2 snRNPs, and sequences at the 3' end of the intron - properties shared with the initial steps of normal assembly and directed by sequences at the 3' end of the intron. In contrast, pellet complex assembly shows no dependence on the presence of a 5' splice junction within precursor RNA. Furthermore, binding of factors to the 5' splice junction is deficient in pellet assemblies. Thus, the pellet lacks a factor required for proper recognition of 5' splice sites. This factor can be supplied by the supernatant. Complementation occurs when supernatant U1 RNA is destroyed, suggesting that the supernatant factor recognizing 5' splice sites is not U1 snRNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号