首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
利用蛋白银技术研究了海洋纤毛虫—海洋尾丝虫无性生殖期间的口器发生过程。结果显示其口器发生与已知的同属种类具相似的过程和形式。其口器发生及演化的基本模式可表示如下 :后仔虫的小膜 1、小膜 2来源于老口侧膜后段的增殖 ;后仔虫的口侧膜及盾片来源于老口侧膜前段的增殖 ;后仔虫的小膜 3来自于老口区盾片的增殖 ;前仔虫的口侧膜及盾片来源于老口侧膜 ,三片小膜在口器发生过程中被保留。文中根据现有的形态发生资料对尾丝虫科的系统关系进行了探讨  相似文献   

2.
利用蛋白银法对采自山东胶州育虾池的一种海洋盾纤类纤毛虫,水滴伪康纤虫(Pseudocohnilembus persalinus Evans&Thompson,1964)的口器发生过程进行了详细的观察和研究,并对其形态学做了补足性描述。文章通过对该青岛种群发生过程的研究,认为前人所报道的种群(Evans&Thompson,1964;Pomp&Wilbert,1988)缺乏对某个发生关键时期的观察而存在着错误,即:后仔虫的小膜2明确来自老的口侧膜,而不是前人报道的盾片。此外,文章还发现该种的发生与本属另一哈氏伪康纤虫的发生过程几乎完全相同。主要细胞发生过程为:盾片最先增殖,形成初级原基区,然后分裂成前后两部分,前部分最终消失,而后部分最终形成后仔虫的小膜3。继盾片增殖之后口侧膜的锯齿状结构沿细胞纵轴方向分裂成两列,右侧的一列增殖形成次级原基区,之后分裂成前后两部分,前部分迁移形成后仔虫的口侧膜和盾片,后部分形成后仔虫的小膜1和小膜2;老口侧膜的残余部分形成前仔虫的口侧膜及盾片。老的小膜1、小膜2和小膜3则完全为前仔虫所继承。  相似文献   

3.
暗尾丝虫的形态与形态发生研究   总被引:1,自引:0,他引:1  
宋微波 《动物学报》1991,37(3):233-243
本工作采用Chatton-Lwoff氏银浸法及Wilbert氏蛋白银染色法研究了淡水纤毛虫暗尾丝虫Uronema nigricans(Muller,1786)的形态、核器、纤毛下器、银线系及详细的形态发生过程。结果显示其口器发生与已知的同属种类海洋尾丝虫具相似的过程及形式。其口器发生及演化的基本模式可表达成: 前仔虫:原口侧膜→口侧膜,盾片; 后仔虫:原口侧膜→口侧膜,第1小膜,第2小膜,盾片; 原盾片→第3小膜。 文中另外列表比较了本属与其它属的形态发生特征,并据此建立了一新科,拟梭虫科。  相似文献   

4.
尖前口虫的口器发生研究(纤毛门, 膜口目)   总被引:1,自引:0,他引:1  
研究了咽膜类纤毛虫尖前口虫无性生殖期的核器及口器的演化.其发生特征为;1)新的口原基形成于原前庭动基列与口侧膜间,表观为原口侧膜分裂而致;2)随着形态发生的进行,由口原基依次演化出后仔虫的三片咽膜、口侧膜和三条前庭动基列;3)原口器完全被前仔虫所继承;4)体纤毛器在整个形态发生过程中一直保持双动基列结构.    相似文献   

5.
利用蛋白银染色法研究了毛尾刺虫的形态及无性生殖周期中的形态发生,其过程为:(1)后仔虫口原基出现在左缘棘毛内侧深层,其内的毛基体组装成整齐排列的小膜并分化成新AZM1,AZM2和口侧膜,(2)前仔虫口原基出现在老仔虫AZM2之前方深处,其随后发育成前仔虫的AZM2口侧膜及AZM1的一部分,并更新老结构的AZM1中第7-11片小膜,(3)额腹横棘毛原基为5列,分别以3:3:2:2:3方式分化最终产出  相似文献   

6.
孙萍  宋微波 《动物学报》2005,51(1):81-88
利用蛋白银染色技术研究了海洋纤毛虫———黄色伪角毛虫Pseudokeronopsisflava (Cohn ,186 6 )Wirns berger,Larsen&Uhlig ,1987无性生殖期间的细胞发生学。其主要特征为 :1)前仔虫口原基以独立发生的方式出现并独特地形成于口前庭右侧的皮层深处 ,由其对老口围带进行完全的更新 ;2 )老口器不参与新口器的形成 ,完全被吸收 ;3)前仔虫的额 -腹 -横棘毛原基同样为独立发生 ,老结构可能不参加其随后的发育 ;4 )后仔虫的口原基、波动膜原基及额 -腹 -横棘毛原基均来自最初排列无序的毛基粒发生场 ;5 )背触毛及缘棘毛的更新发生在老的结构中 ,并向前后延伸取代老结构 ;6 )在整个发生过程中 ,无大核融合现象。文中同时对该种所表现的发生学特征及系统学意义做了探讨  相似文献   

7.
王梅  宋微波 《动物学研究》1995,16(3):233-238
卡龙游仆虫为海洋中自由生纤毛虫,利用银染法对该种二分裂期间的形态发生学进行了初步的研究,其主要过程为:1.伴随大核改组带的出现和DNA复制开始,口原基发生于老口围 方皮膜下一龛腔内,后由前至后组装成围口小膜而演化为后AZM。老口围带及口侧膜在原位被被前仔虫继承;2.体棘毛场首先出现两组棘毛原基,其随后各自独立演化成9根前、后仔虫的额-腹-横棘毛;3.缘棘毛原基也为独立发生,初为单一,后断裂为二并分  相似文献   

8.
鲤斜管虫的形态及形态发生的研究   总被引:1,自引:0,他引:1  
本文报道了鲤斜管虫的形态、纤毛下器、核器、银线系及形态发生过程。其腹面口区具二环围口纤毛列及一口前纤毛列;背面具一列背刚毛;腹面纤毛列的数目可发生较大变动。在其形态发生过程中,左纤毛列在右纤毛列发生断裂前同时断裂;短基粒列形成后仔虫的背刚毛;前仔虫保留原口管前端部分,后仔虫的口管重新形成。本文还对鲤斜管虫的形态学特征、口管形成机理及分类问题等进行了讨论。  相似文献   

9.
应用蛋白银染色技术研究了悬游双眉虫青岛种群无性生殖期间皮层结构和核器的演化过程,其主要特征为:后仔虫口原基独立地出现于紧靠虫体左侧第一根横棘毛的皮层下小龛,其中毛基粒不参与其它棘毛原基的形成;老的口围带发生后半部的局部重建而非整个的由前仔虫简单继承;在前仔虫中,波动膜原基来自老结构的反分化,而在后仔虫中则来自口原基;所有棘毛原基均为独立发生并与老结构没有任何关系;在前仔虫中,口棘毛(即左侧第一根额棘毛)来自于波动膜的反分化,而在后仔虫中则为独立发生;背触毛列于老的结构当中产生,并由最右一列原基演化出3根尾棘毛;两大核片段的改组带从一端向另一端移动 ,并随着两者的融合而消失.文中同时对前人有关该属发生模式的若干存疑问题做了探讨 [动物学报 54(3):517-524,2008].  相似文献   

10.
冠突伪尾柱虫的腹皮层纤毛器微管胞器及其形态发生   总被引:9,自引:0,他引:9  
周素娟  尹飞  生欣  顾福康 《动物学报》2008,54(2):299-308
应用荧光紫杉醇直接荧光标记和抗α-微管蛋白抗体免疫荧光标记方法,显示冠突伪尾柱虫腹皮层纤毛器微管胞器由口围带、波动膜、额腹横棘毛和左右缘棘毛等纤毛器微管、纤毛器基部附属微管等组成。口围带基部含小膜托架及与托架相联系的肋壁微管,其中领部小膜托架间由"∧"形微管相联接;额腹横棘毛基部含前纵微管束、后纵微管束、横微管束和周围微管束,其微管在不同棘毛基部的发达程度不一,其中两列中腹棘毛基部微管紧密联系成一条粗绳索样结构,且左、右中腹棘毛基部的横微管束定向相反;左、右缘棘毛基部含前纵微管束、后纵微管束和横微管束,其中横微管束不发达。与目前已知的腹毛目纤毛虫例如贻贝棘尾虫、魏氏拟尾柱虫的纤毛器基部微管相比较,冠突伪尾柱虫腹皮层纤毛器基部微管除具有腹毛目纤毛虫纤毛器基部微管的基本特征外,也具有一些特殊的组成模式。皮层纤毛器微管形态发生中,前仔虫口围带并非全部是由老口围带更新而来的,其老口围带只有翻领部发生更新,且翻领部与领部接续处有一小段老的翻领部小膜保留,领部的小膜保留,结果其领部小膜、接续处保留的小膜与更新的翻领部小膜三部分共同组成前仔虫的新口围带。在后仔虫口原基发生的位置,其邻近的老横棘毛没有变化,此时老的横棘毛或许能起到"参照点"或定位作用;各类纤毛器发生、分化过程中,处于非原基区的老额棘毛、横棘毛及左右缘棘毛在较长时间内均未见明显的变化。它们可能是在新结构形成时仍然起到运动作用继而逐渐失去功能而退化瓦解的。  相似文献   

11.
A new hymenostomatid ciliate, Anteglaucoma orientalis n. sp., isolated from a freshwater pond in Harbin, northeastern China, was investigated using live observation and silver staining methods. Anteglaucoma orientalis is characterized as follows: size in vivo about 50–60 × 30–35 μm; oval body shape; buccal area occupies about 25% of body length; 28–36 somatic kineties; membranelle 1 having six or seven basal body rows, membranelle 2 five to seven rows, and membranelle 3 three rows; single macronucleus with one micronucleus attached. Morphogenesis of the genus Anteglaucoma is revealed for the first time. The main events during binary fission are as follows: morphogenesis begins with proliferation of kinetosomes in the middle part of postoral kinety 1, and kinetosomes of this primordial field multiply and organize to finally form the paroral membrane and membranelles 1–3 of the opisthe; the parental apparatus in the proter does not take part in the stomatogenetic process. Phylogenetic analyses based on SSU rRNA gene sequences show that Anteglaucoma orientalis n. sp. clusters with the type species, A. harbinensis Pan et al., 2017, with full support.  相似文献   

12.
13.
ABSTRACT The morphology and morphogenesis of Metopus hasei Sondheim, 1929 and M. inversus (Jankowski, 1964) n. comb, were investigated using live observation, silver impregnation, and scanning electron microscopy. Metopus has a spiral body organization and the ventral margin of the preoral dome bears five specialized ciliary rows, that form the so-called perizonal stripe. Division is homothetogenic, occurs in freely motile (i. e. non-encysted) condition, and includes a partial reorganization of the parental oral apparatus. During division, the complicated cell shape becomes ellipsoidal and all ciliary rows arrange meridionally. Stomatogenesis is entirely somatic (≅ pleurotelokinetal) and commences with the formation of kinetofragments in some dorsolateral kineties. The fragments become the opisthe's adoral membranelles, while the paroral membrane is generated by the left two perizonal ciliary rows, which proliferate kinetids intrakinetally. The perizonal stripe of the opisthe is generated by the three right parental perizonal kineties, which divide, and by two dorsolateral ciliary rows, which are added. The morphogenetic processes, especially the unique mode of formation of the paroral membrane, are used to define the order Metopida Jankowski, 1980 n. stat. more properly. The ontogenetic, ultrastructural, and sequence data available give no clear indication about metopid phylogeny, but definitely exclude metopids from the classical heterotrichs, with which they were classified for more than 100 years. Accordingly, we place the Metopida as incertae sedis in the subphylum Intramac-ronucleata Lynn, 1996.  相似文献   

14.
Morphogenesis of cell division was investigated in Diophrys scutum, D. oligothrix, and D. appendiculata utilizing both light microscopy of living and stained specimens and SEM of preserved specimens. The cortical morphogenetic pattern of Diophrys is similar to that of other members of the family Euplotidae. The opisthe oral primordium, which develops in a subsurface pouch, forms posterior to the parental buccal cavity. The proter inherits the parental adoral zone of membranelles (AZM) apparently unchanged. The endoral membrane forms to the right of the posterior end of the AZM in the proter, in association with the developing AZM in the opisthe. The paroral cirrus and membrane develop from a single streak that first appears along the right edge of the buccal cavity in the proter to the right of the developing buccal structures of the opisthe. Frontal and transverse cirri develop in both proter and opisthe from five separate cirral primordia that form to the right of the buccal cavity. Left marginal cirri do not develop in association with the corresponding parental structures. Kinetosomes formed within the opisthe oral primordium, or kinetosomes that were part of any parental ciliary structure, do not appear to become part of any developing paroral structures, frontal, transverse, or left marginal cirri. Speciation within the genus Diophrys and evolution of the family Euplotidae as they relate to the morphogenesis of cortical structure are discussed.  相似文献   

15.
ABSTRACT. The morphology and morphogenesis of two species of the genus Lembadion, L. lucens and L. bullinum , are described. In both species, left and right ventral kineties converge behind the mouth forming a postoral suture. Buccal infraciliature is formed by one polykinety and two very close paroral kineties (inner and outer). During stomatogenesis, the new oral structures originate from the paroral kineties. The inner paroral kinety forms the new adoral polykinety and regenerates the outer paroral kinety of the proter, while the paroral kineties of the opisthe originate from the outer paroral kinety of the parental cell. Somatic proliferation starts before the stomatogenesis at the equatorial level of the cell, and extends towards the poles forming an equatorial band. Two large invariant zones, anterior and posterior, remain in the dividing cell. Moreover, the kinetodesmal fibers disappear in the proliferation band during the bipartition (fission) process.  相似文献   

16.
K Eisler 《Bio Systems》1992,26(4):239-254
The ciliate species which lack a distinctive oral ciliature are considered to represent an ancestral state in ciliate evolution. Consequently, the somatic kineties composed of kinetids (kinetosomes plus cilia and associated fibrillar systems) are thought to be the ancestral ciliature. Results on stomatogenesis in 'gymnostomial ciliates' have shown that these ciliates probably have evolved from ancestors already equipped with an oral ciliature. Thus instead of the somatic, the oral ciliature may be regarded an ancestral. Based on these ideas a hypothesis on the evolution of the ciliate kinetome (assembly of all kinetids covering the body of a given ciliate) is presented. The first step in the evolution of the kinetome was the formation of a paroral membrane, a compound ciliary organelle lying along the right side of the oral area which historically but falsely is termed membrane. It was composed of kinetosomal dyads (dikinetids), derived from the kinetid of a dinoflagellate-like ancestor. From the beginning the paroral membrane was responsible for locomotion, ingestion and for the formation of a cytopharyngeal tube which the first ciliate probably had inherited from its flagellate ancestor. In the second step a first somatic kinety was formed from the right row of kinetosomes of the paroral membrane as a result of a longitudinal splitting of the paroral membrane and a subsequent migration of the forming kinety to the right into the somatic cortex. To increase the number of somatic kineties this process was repeated until the kinety produced first reached the left border of the oral area. By this step the locomotive and the nutritional functions were differentiated between somatic and oral structures. In a third step the adoral organelles were formed from somatic kinetids left of the oral area. The primitive type of stomatogenesis was a buccokinetal one derived from the mode the flagellate ancestor used to distribute its replicated kinetosomes to the offspring cells (buccokinetal means that at least parts of the oral anlage for the posterior offspring cell has its origin in the parental oral apparatus). This hypothesis, based on comparative studies on ciliate morphogenesis, is corroborated by molecular data from other laboratories.  相似文献   

17.
The morphogenesis of the stichotrichous ciliate, Neokeronopsis spectabilis, collected from a freshwater pond near Harbin, north China, was observed following protargol impregnation. The overall morphogenetic events are characterized by: (1) the new oral primordium originates in association with the transverse cirri; (2) the proter's undulating membrane anlage is formed following the dedifferentiation of the parental endoral and paroral membranes, while the old adoral zone of membranelles is retained; (3) the fronto-ventral-transverse cirral anlagen originate independently on the right of the proter's undulating membrane anlage; (4) the left and right marginal cirri are derived from new anlagen that originate within the old marginal rows; (5) the generation of the dorsal kineties is of the "two-group-mode" with fragmentation and hence an oxytrichid pattern; and (6) similar to that in oxytrichids, the caudal cirri are formed at the posterior ends of the rightmost and two leftmost kineties of the group 1. Some new morphological data for N. spectabilis are also presented and the systematic position of the genus Neokeronopsis is briefly discussed. We conclude that its position among the urostylids is peripheral and that it very likely represents an intermediate form between the oxytrichids and urostylids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号