首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riparian zones provide critically important ecological functions, including the interception of nutrients and sediments before they enter waterways. Consequently, riparian zones, and the vegetation they support, are often considered as an important ‘final buffer’ between waterways and adjacent land. In agricultural ecosystems, riparian zones are therefore increasingly recognized as an important component of strategies aimed at minimizing the flow of nutrients and sediments into waterways. Accordingly, riparian zones are increasingly afforded protection and are targeted for restoration. Here we present results of a study in which we aimed to identify patterns of change in soil and vegetation properties in riparian zones, under different management regimes, adjacent to tributary streams in one of south‐eastern Australia's main agricultural regions. We compared riparia that were heavily impacted by agricultural activities, were in remnant condition or had undergone some restoration activities and were thus in a transitional state. There was an increase in plant cover and soil C concentration between impacted through to remnant sites, with transitional sites intermediate, suggesting that improvements in soil conditions were becoming evident following restoration activities. In our assessment of soil physicochemical properties we investigated the relationships between riparian condition and soil properties, taking into account the influence of adjacent land use on these relationships. Importantly, the concentrations of NO3 and plant available P in riparian surface soils were more or less influenced by concentrations in the adjacent land depending upon riparian condition. This will, in turn, have consequences for nutrient inputs into streams. This study emphasizes that riparian zones need to be managed within their wider landscape context. Furthermore, the results of this study will inform efforts seeking to minimize impacts of agricultural activities on waterways, through the conservation and/or restoration of riparian ecosystems.  相似文献   

2.
The complex nature of ecosystems with multiple invaders requires whole-system approaches to ecosystem management. Undesirable, unintended secondary effects may occur if interspecific interactions are ignored. Although degraded riparian zones urgently need effective restoration, broad-scale removal of introduced tree species (e.g., willows [ Salix spp.]) and fencing of riparian zones to exclude livestock may facilitate spread of the invasive aquatic grass Glyceria maxima in southeastern Australia. We recorded occurrence of the grass at riparian sites with different amounts of woody vegetation, including willows, and monitored spread for 2 years in locations with and without livestock. Glyceria maxima occurred more frequently at sites with little or no woody riparian vegetation. Larger, older patches fenced from livestock spread fastest. Analyses of costs of controlling G. maxima with herbicide showed that it is more cost-effective to eradicate small patches than large patches if locations are known. However, the cost per m2 reduction in patch size is cheaper for larger patches. We recommend that small, young patches should be eradicated as soon as detected and show that spread of large source patches can be controlled effectively with continued spraying over several years. If restoration of waterways is to succeed, riparian management strategies must recognize connectivity between riparian and freshwater habitats.  相似文献   

3.
Many New Zealanders are planning and implementing riparian management, and riparian fencing and planting are now standard best practice tools for water quality and habitat restoration. New Zealand has a long history of action, with the first catchment riparian schemes and science dating back to the 1970s. As a result of this, there is now solid scientific evidence that demonstrates the value of a range of management actions including the following: riparian zones and buffers for livestock exclusion (fencing with or without planting), nutrient processing, shading small streams for temperature control, providing leaf and wood input to stream ecosystems, and enhancing fish and invertebrate habitat. In the last decade or so, on‐ground action has accelerated significantly with the introduction of dairy industry and government agreed targets. In 2015, 96% of dairy cows had been excluded from waterways >1 m wide and >30 cm deep on land that cows graze during the milking season providing impetus for on‐ground action to spread into other pastoral industries. Tools for planning, managing and implementing successful riparian restoration have proliferated, informed by on‐ground successes and failures. Despite this, there remain challenges for individuals or communities planning riparian restoration. Careful case‐by‐case assessment is recommended to ensure that plans match design to local landscape constraints and can realistically contribute to improved water quality or habitat outcomes.  相似文献   

4.
We review the current understandings of the frequency, spatial distributions, mechanisms, and ecological consequences of fire in riparian zones. Riparian zones are well known for influencing many ecological processes at local to landscape scales, and fire can have an important ecosystem-scale influence on them. Riparian zones differ from surrounding uplands in their biophysical templates, moisture regimes and disturbance regimes; as a consequence the characteristics and effects of fire are different than in adjacent uplands. Fire impacts on riparian zones vary proportionally with the severity and extent of burning in the catchment and are affected by stream size. Riparian zones can act as a buffer against fire and therefore as a refuge for fire-sensitive species. However, under some circumstances, such as dry pre-fire climatic conditions and the accumulation of dry fuel, riparian areas become corridors for fire movement. Fire incursion into riparian zones creates canopy gaps and drier conditions, which allow subsequent build up of dead wood and establishment of fire adapted species. In concert, this increases fuel loads and the probability of another fire. Secondary effects of riparian fire include altering nutrient fluxes and cycling, increasing sediment loads, and stimulating erosion. We conclude that riparian fires are potentially important in shaping ecological characteristics in many regions, but this is poorly quantified. A better understanding of riparian fire regimes is essential to assess the effects of fire in helping shape the complex ecological characteristics of riparian zones over the longer-term.  相似文献   

5.
Herbaceous riparian buffers (CP 21 grass filter strips) are a widely used agricultural conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings to agricultural streams. The ecological impacts of herbaceous riparian buffers on the channelized agricultural headwater streams that are common throughout the midwestern United States have not been evaluated. We sampled riparian habitat, geomorphology, instream habitat, water chemistry, fishes, and amphibians for 4 years from three channelized agricultural headwater streams without herbaceous riparian buffers and three channelized streams with herbaceous riparian buffers in central Ohio. Only seven of 55 response variables exhibited differences between buffer types. Riparian widths were greater in channelized headwater streams with herbaceous riparian buffers than streams without herbaceous riparian buffers. Percent insectivores and minnows were greater in channelized streams without herbaceous riparian buffers than streams with herbaceous riparian buffers. Percent clay, turbidity, specific conductance, and pH differed between buffer types only during one sampling period. No differences in geomorphology and amphibian communities occurred between buffer types. Our results suggest channelized agricultural headwater streams with and without herbaceous riparian buffers are similar physically, chemically, and biologically. Installation of herbaceous riparian buffers alone adjacent to channelized agricultural headwater streams in central Ohio and other parts of the midwestern United States may only provide limited environmental benefits for these stream ecosystems in the first 4-6 years after establishment. Alternative implementation designs combining the use of herbaceous riparian buffers with other practices capable of altering nutrient and pesticide loads, riparian hydrology, and instream habitat are needed.  相似文献   

6.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

7.
Restoration and management of riparian ecosystems: a catchment perspective   总被引:10,自引:0,他引:10  
1. We propose that strategies for the management of riparian ecosystems should incorporate concepts of landscape ecology and contemporary principles of restoration and conservation. A detailed understanding of the temporal and spatial dynamics of the catchment landscape (e.g. changes in the connectivity and functions of channel, riparian and terrestrial components) is critical. 2. This perspective is based upon previous definitions of riparian ecosystems, consideration of functional attributes at different spatial scales and retrospective analyses of anthropogenic influences on river catchments. 3. Restoration strategies must derive from a concise definition of the processes to be restored and conserved, recognition of social values and commitments, quantification of ecological circumstances and the quality of background information and determination of alternatives. 4. The basic components of an effective restoration project include: clear objectives (ecological and physical), baseline data and historical information (e.g. the hydrogeomorphic setting and the disturbance regime), a project design that recognizes functional attributes of biotic refugia, a comparison of plans and outcomes with reference ecosystems; a commitment to long-term planning, implementation and monitoring and, finally, a willingness to learn from both successes and failures. 5. Particularly important is a thorough understanding of past natural disturbances and human-induced changes on riparian functions and attributes, obtained by a historical reconstruction of the catchment.  相似文献   

8.
9.
10.
11.
Restoring urban forests often involves eradicating exotic species and diligently guarding against future invasions. Understanding how landscape structure contributes to the distribution of exotic species may inform these management efforts. To date, the distribution of exotic species in forested patches has been correlated with the type of development surrounding the patch, with those surrounded by agricultural or urban development often more highly invaded. Yet, previous studies have categorized land use types and have not examined more local-scale changes in land use. These local changes may be particularly important in urban areas where forested patches are immediately surrounded by diverse land use types. Our study examined how two key aspects of landscape structure, patch size and adjacent land use, may influence patterns of exotic species invasion of riparian buffers within Raleigh and Cary, North Carolina, United States. We found that large patch size alone, in our case, wide riparian buffers, does not protect against exotic species invasion. Patches surrounded by higher canopy-cover landscapes (e.g., forests and older residential developments with mature canopy) were more likely to be invaded than those surrounded by less canopy cover (e.g., shopping malls and other commercial development). We attribute these results, in part, to increased pressure from exotic propagules from adjacent forests. When restoring urban forests, attention should be paid to local land use to better plan for successful, long-term eradication of exotic species.  相似文献   

12.
Abstract River and stream rehabilitation projects are increasing in number, but the success or failure of these projects has rarely been evaluated, and the extent to which buffers can restore riparian and stream function and species composition is not well understood. In New Zealand the widespread conversion of forest to agricultural land has caused degradation of streams and riparian ecosystems. We assessed nine riparian buffer zone schemes in North Island, New Zealand that had been fenced and planted (age range from 2 to 24 years) and compared them with unbuffered control reaches upstream or nearby. Macroinvertebrate community composition was our prime indicator of water and habitat quality and ecological functioning, but we also assessed a range of physical and water quality variables within the stream and in the riparian zone. Generally, streams within buffer zones showed rapid improvements in visual water clarity and channel stability, but nutrient and fecal contamination responses were variable. Significant changes in macroinvertebrate communities toward “clean water” or native forest communities did not occur at most of the study sites. Improvement in invertebrate communities appeared to be most strongly linked to decreases in water temperature, suggesting that restoration of in‐stream communities would only be achieved after canopy closure, with long buffer lengths, and protection of headwater tributaries. Expectations of riparian restoration efforts should be tempered by (1) time scales and (2) spatial arrangement of planted reaches, either within a catchment or with consideration of their proximity to source areas of recolonists.  相似文献   

13.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

14.
Representatives from agencies involved in natural resource management in the Murray‐Darling Basin gathered for a workshop in November 2010 to develop a vision for improved monitoring and reporting of riparian restoration projects. The resounding message from this workshop was that the effectiveness of riparian restoration depends on having sound, documented and agreed evidence on the ecological responses to restoration efforts. Improving our capacity to manage and restore riparian ecosystems is constrained by (i) a lack of ecological evidence on the effects of restoration efforts, and (ii) short‐termism in commitment to restoration efforts, in funding of monitoring and in expected time spans for ecosystem recovery. Restoration at the effective spatial scope will invariably require a long‐term commitment by researchers, funding agencies, management agencies and landholders. To address the knowledge gaps that constrain riparian restoration in the Basin, participants endorsed four major fields for future research: the importance of landscape context to restoration outcomes; spatio‐temporal scaling of restoration outcomes; functional effects of restoration efforts; and developing informative and effective indicators of restoration. To improve the monitoring and restoration of riparian zones throughout the Basin, participants advocated an integrated approach: a hierarchical adaptive management framework that incorporates long‐term ecological research.  相似文献   

15.
16.
Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest‐dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm‐dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the need for further research into spatial variation in biodiversity–ecosystem function relationships and how the results of such studies are affected by methodological choices.  相似文献   

17.
18.
Abstract Dryland salinity presents an overwhelming threat to terrestrial and aquatic habitats in Australia, and yet there remains very little empirical evidence of the impacts of secondary salinization on the biodiversity of riparian communities. Here we describe the response of a riparian plant community to stream and soil salinization, 25 years after the experimental clearing of a catchment in south‐western Australia. Riparian plant species diversity was inversely related to soil salinity, and plant species composition was significantly altered by increased soil salinity. Despite the evidence for an impact of salinization on the taxonomic diversity and composition of the riparian plant community, there was little evidence for any effect of salinization on functional group diversity, or on ecological functioning, as measured by the percentage of above‐ground plant cover.  相似文献   

19.
In Italy, Platanus orientalis L. is judged as an endangered species by some authors and non-native by others: these contrasting assessments can mislead the prioritization of management actions to preserve the species and the riparian vegetation that is its host. Based on a multidisciplinary approach, including palaeobotanical and ecological information, we assessed its status in Italy including the ecological and conservation value of the riparian plant communities hosting it in the Cilento National Park (S-Italy). Palaeobotanical data showed that P. orientalis in Italy should be considered an archaeophyte. According to the ecological assessment of the riparian plant communities hosting P. orientalis, the presence of the species can be interpreted as an indicator of an unfavourable state for the conservation of riparian vegetation. Knowing the status of a species remains one of the first steps to take to correctly propose scientifically based solutions for the conservation of plant diversity. However, there are no absolute criteria for conservation because all conservation objectives can be considered as cultural values. In this context, P. orientalis should be protected as a symbolic tree, an archaeophyte testifying an ancient common Mediterranean cultural heritage, worthy of preservation but outside of natural habitats.  相似文献   

20.
Riparian treatments, consisting of 3‐ to 4‐m buffer strips, stream bank stabilization, and rock‐lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991–1992) and 3–5 years after (2001–2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel‐structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47–87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号