共查询到20条相似文献,搜索用时 0 毫秒
1.
蚁播植物种子上常附着有蚂蚁喜食的油质体,该物体可吸引蚂蚁取食或为蚂蚁提供钳着位点从而影响种子散布。为进一步揭示油质体在种子散布中的作用,在野外研究了4属5种典型蚁播植物包括小花宽瓣黄堇(Corydalis giraldii Fedde)、假刻叶紫堇(C.pseudoincisa C.Y.Wu)、白屈菜(Chelidonium majus L.)、紫花堇菜(Viola grypoceras A.Gray)和柔毛淫羊藿(Epimedium pubescens Maxim.)其相应的搬运蚂蚁即玉米毛蚁(Lasius alienus(Foerster))和尼特纳大头蚁(Pheidole nietneri Emery)对植物完整种子(SE)、去除油质体的种子(S)和粘有人工模拟油质体的种子(S+H)的搬运行为和搬运效率。结果显示,蚂蚁对相同植物3类种子的触碰和检查次数均无显著差异。蚂蚁对种子的尝试搬运次数除玉米毛蚁对小花宽瓣黄堇、假刻叶紫堇和白屈菜去除油质体的种子(S)显著高于完整种子(SE)和粘有人工模拟油质体的种子(S+H)外,其它的均无显著差异。玉米毛蚁对小花宽瓣黄堇、假刻叶紫堇、白屈菜和紫花堇菜以及尼特纳大头蚁对小花宽瓣黄堇、假刻叶紫堇和紫花堇菜完整种子(SE)的搬运效率显著高于粘有人工模拟油质体的种子(S+H)和去除油质体的种子(S),此外,玉米毛蚁对小花宽瓣黄堇粘有人工模拟油质体的种子(S+H)的搬运效率显著高于去除油质体的种子(S)。这说明玉米毛蚁在搬运小花宽瓣黄堇种子过程中油质体不仅起到吸引作用,而且起到钳着位点作用;玉米毛蚁在搬运假刻叶紫堇、白屈菜和紫花堇菜以及尼特纳大头蚁搬运小花宽瓣黄堇、假刻叶紫堇和紫花堇菜种子过程中油质体仅起到吸引作用。研究表明油质体可通过对蚂蚁起吸引作用,或同时起吸引和钳着位点的双重作用等影响种子散布,油质体的影响作用不但取决于植物种类,也与搬运蚂蚁的种类有关。 相似文献
2.
Seed dispersal of the hemiparasitic plant Thesium chinense by Tetramorium tsushimae and Pristomyrmex punctatus
下载免费PDF全文
![点击此处可从《Entomological Science》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Kenji Suetsugu 《Entomological Science》2015,18(4):523-526
Heterotrophic plants normally produce a vast number of dust‐like seeds containing minimal energy reserves, which are usually wind dispersed. However, some heterotrophic species have evolved adaptive strategies to use zoochorous seed dispersal. Seed dispersal by ants, known as myrmecochory, is one of the most widespread animal dispersal systems and has been reported in a diverse range of plant taxa. However, the combination of myrmecochory and heterotrophy seems to be very rare. Here I report the discovery of myrmecochory in the hemiparasitic plant Thesium chinense by Tetramorium tsushimae and Pristomyrmex punctatus. Myrmecochory would be an advantageous dispersal system for T. chinense because its fruits are quickly transferred to the ants' nests, which provide a refuge from the seed predator Canthophorus niveimarginatus. Myrmecochory is also potentially beneficial for T. chinense, as the nests of these ants are frequently located close to poaceous plants, which are the preferred hosts. 相似文献
3.
Aims Melampyrum pratense and M. subalpinum are two myrmecochorous species, which possess similar habitat requirements and frequently occur together. Despite this, their population sizes differ markedly. Melampyrum pratense populations are usually very large, whereas M. subalpinum has rather small and isolated populations. We suggest that such an imbalance might be partially influenced by the difference in ant-mediated seed-removal rates. Genus Melampyrum is considered to be exclusively myrmecochorous, though to achieve the recent distribution of some Melampyrum species during the Holocene myrmecochory would be highly insufficient. We suggest that endozoochory takes place in the long-distance migration, whereas myrmecochory is important for the removal of seeds on a local scale.Methods For seed-preference analysis, M. pratense and M. subalpinum mixed seed samples were placed around Formica polyctena anthills. After a period of time, the remaining seeds of both species were counted for each sample. The results were analysed by analysis of variance and generalized linear mixed-effect model. To test myrmecochorous removal distances, M. pratense seeds were covered with fluorescent dactyloscopic powder and placed in the vicinity of a large ant trail. The area around the starting plot was searched in the dark using UV LED torchlight 7h after the beginning. The distance from the starting plot was measured for each seed found. Birds, rodents, leporine and a ruminant were fed with M. pratense seeds and fresh plants to test the possibility of endozoochorous dispersal of the species. Animal droppings were searched for intact seeds.Important findings Our field studies show that from mixed seed samples, containing both species, ants significantly preferred the seeds of M. pratense. This may be one of factors that has positive influence on M. pratense success in seed dispersal on mixed stands and consequently in the colonization of favourable sites. Experiments focusing on ant-mediated dispersal distance revealed that F. polyctena ants are able to move seeds over a distance of 36 m in only 7h. This distance is among the furthest known myrmecochorous removals of forest plant seeds. A new Melampyrum seed disperser Oligolophus tridens (Opiliones) was observed repeatedly. Our pilot study documented that Melampyrum seeds are able to pass through the digestive tract of a cow intact. This suggests that large ruminants such as deer, bison or forest-grazing livestock may function as important long-distance dispersers of Melampyrum species. 相似文献
4.
5.
MARIANA CUAUTLE VICTOR RICO-GRAY CECILIA DIAZ-CASTELAZO 《Biological journal of the Linnean Society. Linnean Society of London》2005,86(1):67-77
This paper describes the myrmecochory system of Turnera ulmifolia in a coastal sand dune matorral in Mexico. Turnera ulmifolia has elaiosome‐bearing seeds and extrafloral nectaries (EFNs). In ten quadrants (4 × 15 m) ant–seed interaction was monitored, and an interaction intensity index calculated and correlated with the number of seedlings. Seed removal rates by ants were surveyed every 2 h for 24 h, the ants being observed both on and beneath the plants. The role of the elaiosome in seed removal was evaluated by offering seeds with and without elaiosomes, and elaiosomes only. Finally, the effect of ant manipulation in seed germination was evaluated. There were 25 ant species associated with seeds and/or EFNs, the most frequently recorded being Monomorium cyaneum and Forelius analis. There was a positive correlation between the intensity index and seedling number per quadrant. There was significantly higher mean seed removal during the day than during the night (19.3% and 12.3%, respectively), and from beneath than on the plant (21.9% and 9.5%, respectively). The preference for elaiosomes only was also greater during the diurnal period, and when gathered on, rather than beneath, the plant. Seed manipulation by F. analis enhanced germination by T. ulmifolia. Seed removal, dispersal distances, seed predation and germination were largely determined by ant behaviour. The presence of EFNs may be influencing seed removal on the plant by attracting a specific assemblage of omnivorous ants. Among such assemblages associated with T. ulmifolia we encountered a variety of behaviours, with ant species either good at defending plants but bad at dispersing seeds, or vice versa. We discuss the way in which these two rewards, and the processes involved (defence and dispersion), could have interacted with each other and evolved. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 67–77. 相似文献
6.
BACKGROUND AND AIMS: Myrmecochory is a conspicuous feature of several sclerophyll ecosystems around the world but it has received little attention in the semi-arid areas of South America. This study addresses the importance of seed dispersal by ants in a 2500-km(2) area of the Caatinga ecosystem (north-east Brazil) and investigates ant-derived benefits to the plant through myrmecochory. METHODS: Seed manipulation and dispersal by ants was investigated during a 3-year period in the Xingó region. Both plant and ant assemblages involved in seed dispersal were described and ant behaviour was characterized. True myrmecochorous seeds of seven Euphorbiaceae species (i.e. elaiosome-bearing seeds) were used in experiments designed to: (1) quantify the rates of seed cleaning/removal and the influence of both seed size and elaiosome presence on seed removal; (2) identify the fate of seeds dispersed by ants; and (3) document the benefits of seed dispersal by ants in terms of seed germination and seedling growth. KEY RESULTS: Seed dispersal by ants involved one-quarter of the woody flora inhabiting the Xingó region, but true myrmecochory was restricted to 12.8 % of the woody plant species. Myrmecochorous seeds manipulated by ants faced high levels of seed removal (38-84 %) and 83 % of removed seeds were discarded on ant nests. Moreover, seed removal positively correlated with the presence of elaiosome, and elaiosome removal increased germination success by at least 30 %. Finally, some Euphorbiaceae species presented both increased germination and seedling growth on ant-nest soils. CONCLUSIONS: Myrmecochory is a relevant seed dispersal mode in the Caatinga ecosystem, and is particularly frequent among Euphorbiaceae trees and shrubs. The fact that seeds reach micro-sites suitable for establishment (ant nests) supports the directed dispersal hypothesis as a possible force favouring myrmecochory in this ecosystem. Ecosystems with a high frequency of myrmecochorous plants appear not to be restricted to regions of nutrient-impoverished soil or to fire-prone regions. 相似文献
7.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation. 相似文献
8.
Conflicting selection on diaspore traits limits the evolutionary potential of seed dispersal by ants
Conflicts of selection on diaspore traits throughout the dispersal cycle can limit the evolutionary consequences of seed dispersal. However, these conflicts have never been investigated in directed dispersal systems. We explored conflicts of selection through life stages of dispersal in the myrmecochorous herb Helleborus foetidus. Seeds are subject to two contrasting partial selective scenarios. Undispersed seeds are subject to positive directional selection on seed size characters, whereas seeds dispersed are subject to stabilizing selection for size. In both scenarios, seedling establishment determined the magnitude and direction of selection. This does not reflect ant preferences for seed size. However, total selection still depends largely on ant activity, as ants control the relative importance of each selective scenario. We advocate the use of analytical approaches combining multiplicative fitness and microenvironment‐specific selection to more realistically estimate the realized selection on traits functional during several life stages. This approach may be extended to any organism dispersing offspring to different environments. 相似文献
9.
作为蚁播植物种子的重要传播者,蚂蚁不但取食种子上附着的油质体,也喜食其它富含蛋白质、脂类、糖和维生素等的食物,因此环境中其它可利用食物的存在可能会影响蚂蚁对种子的搬运进而影响种子散布,但目前对于这种影响是如何发生的仍不清楚。在野外研究了蚂蚁对小花宽瓣黄堇(Corydalis giraldii Fedde)种子、肉、蜂蜜、苹果、馒头等食物的趋性和偏好程度,以及添加食物后蚂蚁对种子的拜访频率和搬运效率,以揭示其它可利用食物如何影响蚂蚁觅食和取食偏好,进而影响小花宽瓣黄堇种子散布。结果显示,在所诱捕的8种蚂蚁中,玉米毛蚁(Lasius alienus(Foerster))和丝光蚁(Formica fusca Linnaeus)是小花宽瓣黄堇种子的主要搬运者,不同食物诱捕的玉米毛蚁数量无显著性差异(P0.05),但蜂蜜和苹果诱捕的丝光蚁数量均显著大于种子(P0.05)。玉米毛蚁和丝光蚁均为杂食性,在觅食中分别行使群体募集和简单协作性募集。在仅有种子的对照处理中,玉米毛蚁和丝光蚁对种子的拜访频率分别为(38.73±4.57)头和(30.8±2.87)头(40min,n=15),两种蚂蚁对种子的拜访频率差异不显著(P0.05);玉米毛蚁和丝光蚁搬运种子的效率分别为(33.87±4.22)粒和(16.27±3.35)粒(40min,n=15),玉米毛蚁的搬运效率显著高于丝光蚁(P0.05)。与对照相比,添加馒头、苹果和蜂蜜后丝光蚁对种子的拜访频率显著降低(P0.05),分别为(15.6±3.61)头、(9.07±1.4)头和(7.67±1.58)头(40min,n=15);添加苹果和蜂蜜后丝光蚁对种子的搬运效率显著降低(P0.05),分别为(3.47±1.17)粒和(2.87±0.9)粒(40min,n=15);添加不同食物后玉米毛蚁对种子的拜访频率和搬运效率均无显著变化(P0.05)。研究结果表明行使群体募集的玉米毛蚁比行使简单协作募集的丝光蚁有更高的种子搬运效率,添加食物后影响丝光蚁对种子的拜访频率和搬运效率,这说明其它可利用食物对小花宽瓣黄堇种子散布的影响与搬运蚂蚁的种类及其觅食的募集方式有关。研究结果可为进一步研究蚂蚁与植物(种子)间的互利共生关系及其影响因素提供资料。 相似文献
10.
11.
12.
In a field dominated by Formica polyctena Foerst. ants, we examined the effect of seed aggregation on the seed-removal rates of two plant species: a large-seeded obligate myrmecochore Viola odorata L. and a small-seeded diplochore Chelidonium majus L., which was autochorous as well as myrmecochorous. The effect was statistically non-significant in V. odorata but significant in C. majus, with more closely aggregated seeds having higher removal rates. The large seeds of the obligate myrmecochore were more quickly discovered and repeatedly removed by ant workers than were the small seeds of the diplochore. 相似文献
13.
鸟类和蚂蚁对桃金娘种子传播的初步研究 总被引:8,自引:0,他引:8
在中国科学院鹤山丘陵综合开放试验站观察研究了鸟类和蚂蚁对桃金娘 (Rhodomyrtustomentosa)种子的传播。据野外观察和网捕法所捕鸟的情况可知 :红耳鹎 (Pycnonotusjocosus)和白头鹎 (P .sinensis)两种鸟传播桃金娘种子 ,白头鹎比红耳鹎的数量多。在网捕到的红耳鹎和白头鹎的粪便中收集到的桃金娘种子分别为 8.0± 3.0粒/只和 10 .0± 2 .0粒 /只。在显微镜下观察经过鸟消化道的桃金娘种子都没有破损。传播桃金娘种子的蚂蚁有全异巨首蚁 (Pheidologetiondiversus)和梅花山大头蚁 (Pheidolemeihuashanensis)。它们传播的最远距离分别为 4m和 5m ,平均为 1.1± 0 .0 9m和 1.3± 0 .0 7m。全异巨首蚁占样地蚂蚁个体总数的 6 0 .0 % ;梅花山大头蚁占个体总数的8.1% ;余下的为其他种蚂蚁。每个全异巨首蚁蚁巢平均贮藏桃金娘种子 195 .0± 82 .9粒 ,其中 73.2 %是完好种子。每个梅花山大头蚁蚁巢平均贮藏 2 8.8± 11.4粒种子 ,全部是完好种子。林窗、闲置的空旷地、植物群落交错带都有桃金娘实生苗。在阳光充足的全异巨首蚁和梅花山大头蚁蚁巢边也有桃金娘实生苗的存在 相似文献
14.
15.
Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. 相似文献
16.
17.
B. J. A. POLLUX 《Freshwater Biology》2011,56(2):197-212
1. The last few years have seen an increased interest in the experimental study of seed dispersal by fish (ichthyochory). This paper reviews such experiments, aiming to determine what functional aspects of ichthyochory have been investigated, what experimental designs have been used and what the potential pitfalls are. 2. The process of seed dispersal by fish can be divided into six discrete stages, each with its own probability of occurrence and each individually quantifiable in seed feeding trials: (i) seed uptake, (ii) ingestion, (iii) retention time, (iv) survival, (v) germination probability and (vi) germination rate after gut passage. 3. Inter‐ and intraspecific variation in seed traits (e.g. size, coat hardness, coat morphology, colour, presence and chemical composition of fruit pulp) and characteristics of fish (e.g. gape width, jaw morphology, presence of teeth, length of the digestive tract and digestive capability) can significantly affect the probability of one or more of the six stages of ichthyochory, thereby affecting the probability and distance of seed dispersal by fish. 4. To date only seven studies, which together investigated a total of nine fish species and 25 plant species, have used feeding experiments to study one or more of these quantifiable stages in the ichthyochory process. There is a clear bias in the research questions towards assessing seed survival during passage through the gut and subsequent viability. Only a few studies focus on seed retention in the digestive tract and germination rate, and even fewer address seed ingestion. 5. There is also considerable variation in experimental design among studies: Some have used groups of fish, while others used fish that are individually housed; some have fed seeds to hungry fish, while others used sated fish; some studied germination of seeds dissected from the alimentary tract, rather than seeds recovered from the faeces. 6. I present a number of recommendations for a more standardised protocol for future experimental studies of zoochory in general, and ichthyochory in particular, and highlight areas of interest for future research. 相似文献
18.
Current knowledge of frugivory and seed dispersal by vertebrates in the Oriental Region is summarized. Some degree of frugivory has been reported for many fish and reptile species, almost half the genera of non-marine mammals and more than 40% of bird genera in the region. Highly frugivorous species, for which fruit dominates the diet for at least part of the year, occur in at least two families of reptiles, 12 families of mammals and 17 families of birds. Predation on seeds in fleshy fruits is much less widespread taxonomically: the major seed predators are colobine monkeys and rodents among the mammals, and parrots, some pigeons, and finches among the birds. Most seeds in the Oriental Region, except near its northern margins, are dispersed by vertebrate families which are endemic to the region or to the Old World. Small fruits and large, soft fruits with many small seeds are consumed by a wide range of potential seed dispersal agents, including species which thrive in small forest fragments and degraded landscapes. Larger, bigger-seeded fruits are consumed by progressively fewer dispersers, and the largest depend on a few species of mammals and birds which are highly vulnerable to hunting, fragmentation and habitat loss. 相似文献
19.