首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

2.
The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape‐scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community‐weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial‐dominated microbial communities were associated with exploitative plant traits versus fungal‐dominated communities with resource‐conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.  相似文献   

3.
Domestic livestock grazing has caused dramatic changes in plant community composition across the globe. However, the response of plant species abundance in communities subject to grazing has not often been investigated through a functional lens, especially for belowground traits. Grazing directly impacts aboveground plant tissues, but the relationships between above‐ and belowground traits, and their influence on species abundance are also not well known. We collected plant trait and species relative abundance data in the grazed and nongrazed meadow plant communities in a species‐rich subalpine ecosystem of the Qinghai–Tibet Plateau. We measured three aboveground traits (leaf photosynthesis rate, specific leaf area, and maximum height) and five belowground traits (root average diameter, root biomass, specific root length, root tissue density, and specific root area). We tested for shifts in the relationship between species relative abundance and among all measured traits under grazing compared with the nongrazed meadow. We also compared the power of above‐ and belowground traits to predict species relative abundance. We observed a significant shift from a resource conservation strategy to a resource acquisition strategy. Moreover, this resource conservation versus resource acquisition trade‐off can also determine species relative abundance in the grazed and nongrazed plant communities. Specifically, abundant species in the nongrazed meadow had aboveground and belowground traits that are associated with high resource conservation, whereas aboveground and belowground traits that are correlated with high resource acquisition determined species relative abundance in the grazed meadow. However, belowground traits were found to explain more variances in species relative abundance than aboveground traits in the nongrazed meadow, while aboveground and belowground traits had comparable predictive power in the grazed meadow. We show that species relative abundance in both the grazed and the nongrazed meadows can be predicted by both aboveground traits and belowground traits associated with a resource acquisition versus conservation trade‐off. More importantly, we show that belowground traits have higher predictive power of species relative abundance than aboveground traits in the nongrazed meadow, whereas in the grazed meadows, above‐ and belowground traits had comparable high predictive power.  相似文献   

4.
高梅香  刘冬  张雪萍  吴东辉 《生态学报》2016,36(6):1782-1792
地表和地下土壤动物群落空间格局及其与环境因子的空间作用关系,是揭示地表-地下生态系统格局与过程及生物多样性维持机制的重要基础。于2011年在三江平原农田生态系统,在50m×50m的空间尺度内,基于地统计空间分析方法,揭示地表和地下土壤螨群落及不同螨类物种丰富度的空间格局,并分析这种空间格局与土壤含水量、土壤p H值及大豆株高空间格局的空间关联性。半方差函数和普通克里格插值表明,8月份地表、地下和10月份地下螨群落及这些群落内大部分螨类物种在特定空间尺度内形成集群,表现为空间异质性特征,且这种空间分异多由结构性因素或结构性因素和随机性因素共同调控。交叉方差函数表明,土壤螨群落和不同螨类物种的空间格局与环境因子的空间格局在多种尺度上表现出复杂的空间关联性(正的或负的)。但简单Mantel检验仅发现8月份地表中气门亚目未定种1(Mesostigmata unidentified sp.1)和大豆株高存在明显的正的空间关联性。研究结果表明地下螨群落和生长季节的地表螨群落具有明显的空间异质性结构,地表和地下螨群落及大多数螨类物种丰富度与土壤含水量、土壤p H值及大豆株高的空间关联性并不显著。促进地表-地下生态系统土壤动物群落空间格局研究,为地表-地下格局与过程研究奠定基础。  相似文献   

5.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

6.
Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. Responses of plants, AM fungi, phospholipid fatty acids and community-level physiological profiles were measured after two growing seasons. Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by influencing the community composition of plants and other root fungi, soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and the mycorrhizal treatments had the highest NPP. In contrast, nonmycotrophic forbs were dominant during the second growing season and the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N, and the community composition of soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities can determine ecosystem responses to global change.  相似文献   

7.
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with 15N pool dilution and soil microbial communities were characterized with DNA‐based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia‐oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.  相似文献   

8.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Exotic plant species can affect soil microbial communities with the potential for community and ecosystem feedbacks. Yet, separating the effects of exotics from confounded changes in plant community diversity still remains a challenge. We focused on how plant diversity and native or exotic life history affected root fungi because of their significant roles in community and ecosystem processes. Specifically, we examined how fungi colonizing plant roots were affected by plant richness (one, two or four species) replicated across a range of plant community mixtures (natives, exotics, native-exotic mixtures). Fungal biomass inside roots was affected independently by plant richness and mixture, while root fungal community composition was affected only by plant richness. Extraradical networks also increased in size with plant richness. By contrast, plant biomass was a function of plant mixture, with natives consistently smaller than exotics and native-exotic mixtures intermediate. Plant invasions may have an impact on the belowground community primarily through their effects on diversity, at least in the short-term. Disentangling the effects of diversity and invasion on belowground microbial communities can help us to understand both the controllers of belowground resilience and mechanisms of successful colonization and spread of exotic plants.  相似文献   

10.
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.  相似文献   

11.
Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource‐conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes.  相似文献   

12.
Elevated atmospheric CO2 increases aboveground plant growth and productivity. However, carbon dioxide-induced alterations in plant growth are also likely to affect belowground processes, including the composition of soil biota. We investigated the influence of increased atmospheric CO2on bacterial numbers and activity, and on soil microbial community composition in a pasture ecosystem under Free-Air Carbon Dioxide Enrichment (FACE). Composition of the soil microbial communities, in rhizosphere and bulk soil, under two atmospheric CO2 levels was evaluated by using phospholipid fatty acid analysis (PLFA), and total and respiring bacteria counts were determined by epifluorescence microscopy. While populations increased with elevated atmospheric CO2 in bulk soil of white clover (Trifolium repens L.), a higher atmospheric CO2 concentration did not affect total or metabolically active bacteria in bulk soil of perennial ryegrass (Lolium perenne L.). There was no effect of atmospheric CO2 on total bacteria populations per gram of rhizosphere soil. The combined effect of elevated CO2 on total root length of each species and the bacterial population in these rhizospheres, however, resulted in an 85% increase in total rhizosphere bacteria and a 170% increase in respiring rhizosphere bacteria for the two plant species, when assessed on a per unit land area basis. Differences in microbial community composition between rhizosphere and bulk soil were evident in samples from white clover, and these communities changed in response to CO2 enrichment. Results of this study indicate that changes in soil microbial activity, numbers, and community composition are likely to occur under elevated atmospheric CO2, but the extent of those changes depend on plant species and the distance that microbes are from the immediate vicinity of the plant root surface.  相似文献   

13.
The introduction of photosynthates through plant roots is a major source of carbon (C) for soil microbial biota and shapes the composition of fungal and bacterial communities in the rhizosphere. Although the importance of this process, especially to ectomycorrhizal fungi, has been known for some time, the extent to which plant belowground C allocation controls the composition of the wider soil community is not understood. A tree-girdling experiment enabled studies of the relationship between plant C allocation and microbial community composition. Girdling involves cutting the phloem of trees to prevent photosynthates from entering the soil. Four years after girdling, fungal and bacterial communities were characterized using DNA-based profiles and cloning and sequencing. Data showed that girdling significantly altered fungal and bacterial communities compared with the control. The ratio of ectomycorrhizal to saprobic fungal sequences significantly decreased in girdled treatments, and this decline was found to correlate with the fungal phospholipid fatty acid biomarker 18:2ω6,9. Bacterial communities also varied in the abundance of the two dominant phyla Acidobacteria and Alphaproteobacteria . Concomitant changes in fungal and bacterial communities suggest linkages between these two groups and point toward plant belowground C allocation as a key determinant of microbial community composition.  相似文献   

14.
Microbial communities in plant roots provide critical links between above‐ and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap‐plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.  相似文献   

15.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

16.
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.  相似文献   

17.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

18.
Human activities affect both tree species composition and diversity in forested ecosystems. This in turn alters the species diversity of plant litter and litter quality, which may have cascading effects on soil microbial communities and their functions for decomposition and nutrient cycling. We tested microbial responses to litter species diversity in a leaf litter decomposition experiment including monocultures, 2-, and 4-species mixtures in the subtropical climate zone of southeastern China. Soil microbial community composition was assessed by lipid analysis, and microbial functions were measured using extracellular enzyme activity and gross rates of nitrogen mineralization. We observed a positive relationship between litter species diversity and abundances of mycorrhizal fungi and actinomycetes. Alternatively, enzyme activities involved in carbon and phosphorus acquisition, and enzyme indices of relative carbon limitation, were higher only in the 4-species mixtures. This suggests that the minimum basal substrate level for enzyme production was reached, or that limitation was higher, at the highest diversity level only. Responses to litter diversity also changed over time, where phosphatase responses to litter diversity were strongest early in decomposition and the indices of carbon limitation relative to other nutrients showed stronger responses later in decomposition. Enzyme activities were related to lipid biomarker data and the mass of litter remaining at the third time point, but relationships between enzyme activity and the mass of litter remaining were not consistent across other time points. We conclude that litter species richness will likely only reduce microbial functions at key intervals of diversity loss while microbial growth is more sensitive to incremental diversity loss, with no clear relationships between them or to ecosystem functions. The observed litter diversity effects on soil microbial biomass and enzyme activity indicate interactions of aboveground and belowground communities, and together with environmental conditions they are important for maintaining ecosystem functions.  相似文献   

19.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

20.
典型农田退耕后土壤真菌与细菌群落的演替   总被引:4,自引:0,他引:4  
土壤真菌和细菌作为地下生态系统的重要组成部分,其群落的恢复状况是评价农田退耕还林生态效益的重要指标。以云南省维西县典型退耕还林农田为对象,利用高通量测序等方法比较了不同退耕年限的农田土壤中真菌和细菌群落随植被演替的变化特征。结果发现,农田撂荒后土壤细菌多样性先显著降低后缓慢上升,真菌多样性变化不明显;地上部植被由草本经灌丛再向林地演替的过程中,土壤真菌的群落组成随植被变化呈现明显的改变,主要体现在粪壳菌纲(Sordariomycetes)所占比例的减少(由30%减至10%左右)和伞菌纲(Agaricomycetes)所占比例的增加(由5%以下增至20%以上);而细菌的群落组成无明显变化。聚类分析的结果显示,真菌的群落组成变化与植物群落的演替规律更为同步。不同演替阶段的退耕农田土壤真菌和细菌群落均明显区别于未经扰动的天然林,表明人为扰动对土壤微生物群落的影响可能在较长时间内持续存在。研究揭示了云南典型农田退耕后地下土壤真菌和细菌群落随植被演替的变化特征,为全面评价该地区退耕还林的生态效益提供了数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号