首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is an omnivorous generalist predator which is augmentatively released and conserved for control of whiteflies (Hemiptera: Aleyrodidae) and Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato crops. Eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) are often provided as factitious prey to improve the establishment of N. tenuis after its release. We first tested different amounts of E. kuehniella eggs per plant to optimize N. tenuis establishment and then investigated whether the amount of eggs that optimized N. tenuis establishment might be reduced by adding sugars (hydrocapsules filled with 0.5 m sucrose) under walk‐in cage and commercial greenhouse conditions. These experiments demonstrated that the addition of sugar to the diet of N. tenuis could half the amount of E. kuehniella eggs required to establish N. tenuis. Under greenhouse conditions, the progeny of N. tenuis per plant did not differ significantly between E. kuehniella alone or the half amount of E. kuehniella plus hydrocapsules. These results demonstrated that the sugar could partially substitute for E. kuehniella eggs improve establishment of N. tenuis and suggest that natural sugars such as nectar and honeydew might also beneficial.  相似文献   

2.
Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is common in vegetable crops of the Mediterranean area, with an increasing worldwide range of geographical distribution. This omnivore is a reputed predator of small arthropod pests, but also produces injuries on vegetative and reproductive plant parts. The aim was to estimate density thresholds based on N. tenuis and whitefly abundance for the management of N. tenuis in tomato crops. The assay was carried out in mesh-walled and plastic greenhouses in southern Spain during 2004 and 2007. The natural population dynamics of N. tenuis and whitefly were monitored, and impact on yield quantified. The economic injury level and intervention threshold were predicted based on the zoophytophagous response of N. tenuis and the yield compensation of tomato plants. The proportion of aborted flowers on the tomato plants was related directly to the abundance of N. tenuis and inversely to the interaction between the number of N. tenuis and the number of whitefly immatures. Over-compensation of fruit weight was predicted for flower abortion rates due to N. tenuis lower than 0.171. No yield reduction is expected for values <0.65 N. tenuis per leaf, independent of the whitefly abundance, nor for up to 5 N. tenuis and >26 whitefly immatures per leaf. For intermediate N. tenuis levels, the outcome depends on the prey density. The probability of N. tenuis producing yield loss in tomato crops increases at N. tenuis:whitefly ratios >0.168. Yield reduction is expected after N. tenuis population peaks, when whitefly numbers have been reduced.  相似文献   

3.
Nakano  Ryohei  Hinomoto  Norihide 《BioControl》2021,66(5):659-671

The zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), is an important biological control agent. To maintain this insect, several non-crop host plants are used as banker plants in greenhouse crop systems. To optimize the efficiency of the predator-banker plant interaction, it is necessary to investigate how individual predators move between banker plants and crops. However, the movement is difficult to quantify under field conditions. Therefore, we investigated the movement of N. tenuis between tomato plants (Solanum lycopersicum L., Solanales: Solanaceae) and three banker plants (Cleome hassleriana Chod., Brassicales: Cleomaceae; Sesamum indicum L., Lamiales: Pedaliaceae; and Verbena × hybrida Voss, Lamiales: Verbenaceae) in a greenhouse by conducting PCR using plant-species-specific primers. Laboratory analysis results showed that our molecular method could detect N. tenuis activity within a relatively short time (≤ 24 h). In addition, N. tenuis predation on a pest species was unlikely to result in false detection of plant DNA in the pest (suggesting that N. tenuis had been on the plants). Multiple plant species were detected in adult insects collected from the greenhouse plants, indicating that N. tenuis frequently moved across the mentioned plant species. The movement patterns of N. tenuis between plant species varied substantially based on the plant species from which they were collected, which suggested each of the plant species had different functions for N. tenuis. Our findings revealed that planting multiple host plants would stabilize the N. tenuis population in biological control programs.

  相似文献   

4.
The tomato borer, Tuta absoluta (Meyrick) (Lep.: Gelechiidae), is an important tomato pest native to South America, which appeared in eastern Spain at the end of 2006. Prey suitability of T. absoluta eggs and larval instars was examined under laboratory conditions to evaluate whether two indigenous predators, Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis Reuter (Hem.: Miridae), can adapt to this invasive pest. Both predators preyed actively on T. absoluta eggs and all larval stages, although they preferred first‐instar larvae. Our results demonstrate that both mirids can adapt to this invasive pest, contributing to their value as biological control agents in tomato crops.  相似文献   

5.
The omnivorous predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae) are important biological control agents of pests on tomato crops. In this study, potential intraguild predation (IGP) interactions between the two species were investigated on tomato. We examined: (a) the within plant distribution of both species in the field, (b) the within plant distribution of each predatory species when co-occurred at high densities on tomato caged plants, (c) their behavioral interactions when enclosed in experimental arenas and (d) the development young and old nymphs of M. pygmaeus when enclosed together with N. tenuis adults. Results revealed that the two predators showed a different distribution pattern on the plants, with N. tenuis exploiting mostly the upper part, whereas M. pygmaeus were mostly observed on the 5th to the 7th leaf from the top. However, when the predators co-occurred, N. tenuis or M. pygmaeus individuals were recorded with increased numbers on the lower or the higher part of the plant, respectively. In the presence of N. tenuis adult young nymphs of M. pygmaeus completed their development to the adult stage, when alternative prey (lepidopteran eggs) was present on the plant, however failed to reach adulthood in the absence of alternative prey. A high percentage of the dead nymphs found with their body fluids totally sucked indicating predation by N. tenuis. However, large 4th instar nymphs of M. pygmaeus were much less vulnerable to N. tenuis than younger. The behavior of N. tenuis was affected by the presence of M. pygmaeus, but at a rate similar to that when two individuals of N. tenuis were enclosed together. Contacts between the predators were recorded in a similar frequency in mono- and heterospecific treatments, whereas aggressive behavior was not observed. This study shows that intraguild interactions between M. pygmaeus and N. tenuis occur but are not intensive. The potential implications of the outcomes for biological control are discussed.  相似文献   

6.
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is a zoophytophagous predator widely used in integrated pest management programs in both greenhouse and open-field tomato crops. Mass rearing of N. tenuis is greatly dependent on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as food source. Moreover, the addition of this factitious prey after the inoculative releases of N. tenuis under field conditions is recommended to facilitate establishment of this mirid. However, E. kuehniella eggs are expensive and availability is limited. One possible strategy to reduce the amount of E. kuehniella eggs needed is the provision of sugar. In this work, the effect of sucrose as nutritional supplement on selected life-history traits of N. tenuis was studied. The addition of sucrose (0.5 M) ad libitum to a diet of E. kuehniella eggs significantly increased the progeny of N. tenuis and did not affect survival of nymphs nor developmental time. Moreover, addition of sucrose significantly reduced the number of E. kuehniella eggs consumed. These results may have practical implications of interest in mass rearing systems of N. tenuis and its management in fields and greenhouses as a part of biological control programs.  相似文献   

7.
Zoophytophagous plant bugs feed on plant tissue as a source of water and nutrients, besides feeding on prey. By phytophagy, mirid predators activate plant defense responses through different pathways, resulting, among others, in the release of herbivore‐induced plant volatiles (HIPVs). These compounds could repel herbivores and attract parasitoids and predators, and synthetic versions could potentially be used in biological control. Nevertheless, little is known about the influence of synthetic volatiles on mirid attraction. Using Y‐tube olfactometer trials, we evaluated the responses of Nesidiocoris tenuis (Reuter), Macrolophus pygmaeus (Rambur), and Dicyphus bolivari Lindberg (Hemiptera: Miridae), important natural enemies used to control various greenhouse pests, to 10 synthetic versions of HIPVs released from tomato (Solanum lycopersicum L., Solanaceae) plants induced by N. tenuis and M. pygmaeus. Nesidiocoris tenuis responded to five of the 10 HIPVs, whereas M. pygmaeus and D. bolivari responded to four of the 10 HIPVs. Two green leaf volatiles, (Z)‐3‐hexenyl propanoate and (Z)‐3‐hexenyl acetate, and the ester methyl salicylate (MeSA) were attractive to all three mirid predator species. Our results demonstrate that the volatiles released by tomato plants activated by N. tenuis and M. pygmaeus phytophagy are attractive to their conspecifics and also to D. bolivari. Further studies should evaluate the potential of these compounds to attract predatory mirids in the field.  相似文献   

8.
Tomato is the most important vegetable crop in Spain. The mirid bug Nesidiocoris tenuis (Reuter) commonly appears in large numbers in protected and open-air tomato crops where little or no broad-spectrum insecticides are used. Nesidiocoris tenuis is known to be a predator of whiteflies, thrips and several other pest species. However, it is also considered a pest because it can feed on tomato plants, causing necrotic rings on stems and flowers and punctures in fruits. Our objectives were to evaluate predation by N. tenuis on sweetpotato whitefly Bemisia tabaci Gennadius under greenhouse conditions and establish its relationship to N. tenuis feeding on tomato. Two different release rates of N. tenuis were compared with an untreated control (0, 1 and 4 N. tenuis plant−1) in cages of 8 m2. Significant reductions of greater than 90% of the whitefly population and correspondingly high numbers of N. tenuis were observed with both release rates. Regression analysis showed that necrotic rings on foliage caused by N. tenuis were best explained by the ratio of B. tabaci nymphs:N. tenuis as predicted by the equation y = 15.086x − 0.6359.
Alberto UrbanejaEmail:
  相似文献   

9.
Dicyphine mirids are one of the most important groups of predators on tomato. In the Mediterranean region, several species in the genera Dicyphus, Macrolophus, and Nesidiocoris (Hemiptera: Miridae, Bryocorinae, Dicyphini) colonize protected horticultural crops. In Portugal, Nesidiocoris tenuis (Reuter) is increasingly abundant in the mirid species complex of tomato crops and appears to be displacing the native Dicyphus cerastii Wagner. In order to know whether intraguild predation (IGP) can explain the decreasing abundance of D. cerastii, we evaluated predatory interactions between adult females and first instars of D. cerastii vs. N. tenuis but also D. cerastii vs. Macrolophus pygmaeus (Rambur), as this species is also naturally present in horticultural crops in Portugal. Cannibalistic interactions were also tested for the same three species. All experiments were performed under laboratory conditions, in Petri dish arenas, in the presence or absence of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as alternative prey. Predation on both heterospecific and conspecific nymphs occurred only in the absence of alternative food. Intraguild predation was mutual and symmetrical between D. cerastii and M. pygmaeus. However, IGP was asymmetrical between D. cerastii and N. tenuis, favouring the first. Cannibalism was not significantly different among these mirid species. Our results show that D. cerastii has a greater capacity to feed on intraguild prey than N. tenuis. Therefore, IGP on small nymphs does not explain the abundance shift between D. cerastii and N. tenuis.  相似文献   

10.
The use of Nesidiocoris tenuis (Hemiptera: Miridae) as a biocontrol agent is controversial as it is considered a pest in Northwest European tomato greenhouses, due to its tendency to damage the plant and fruit. Necessary chemical plant protection products to control N. tenuis have toxic side effects on important beneficials like Macrolophus pygmaeus (Hemiptera: Miridae), which jeopardizes the whole IPM programme. In this study, several commercial tomato greenhouses were monitored for mirid populations. The relationship between the number of N. tenuis individuals and plant damage was assessed in function of availability of prey and interaction with M. pygmaeus. These greenhouse data were used to determine a practical density intervention threshold. Next, the hypothesis that a Pepino mosaic virus (PepMV) infection increases plant and fruit damage by N. tenuis (as has been shown for M. pygmaeus) was tested. Plant damage occurred when the average number of predatory bugs in the head of the plant exceeded 16 per ten plants. Plant damage increased in severity at increasing predatory bug densities, independent of the availability of prey and M. pygmaeus presence. Plant and fruit damage were not affected by the presence of PepMV, as was shown for fruit damage in previous studies for M. pygmaeus. Our study provides a practical density intervention threshold for growers in greenhouse crops. Simple monitoring of the number of predatory bugs in the head of the plant can be used to take specific biocontrol actions. It was also shown that only the predatory bug N. tenuis itself causes damage, and there is no interaction with PepMV.  相似文献   

11.
The effect of plant age and daylength on glandular pubescence was determined for two lines of tomato derived from Lycopersicon hirsutum (BTN 979 and LA 1777A) and a variety of L. esculentum (N 91‐1‐1‐1‐1). Densities of type I, IV, VI and VII glandular trichomes were lowest in N 91‐1‐1‐1‐1 and, over all varieties, were more dense on plants aged greater than 6 wk. Daylength interacted with variety to significantly affect densities of type VII trichomes only. Host‐plant resistance to Phthorimaea operculella was determined in preliminary tests using insects cultured from founders from a potato crop and in confirmatory tests using (less readily available) insects recovered from foliage of a tomato crop. Mortality of ex‐potato neonates on LA 1777 A and BTN 979 foliage was higher 18 h after placement than for N 91‐1‐1‐1‐1, with no effect of day length or plant age. Mortality for ex‐tomato neonates followed a similar trend. Ten days later, two‐thirds of ex‐tomato larvae had established mines on N 91‐1‐1‐1‐1 but fewer (16.7%) were live on other varieties. Stepwise multiple regression using variety as the sole factor was significant (P<0.001) in accounting for 61.4% of the variation in ex‐tomato larval survival but addition of other factors to the regression model was not significant. BTN 979 supported fewer, smaller adults to develop than did N 91‐1‐1‐1‐1, whilst no adults developed on LA 1777 A. In a non‐choice test using ex‐potato adults, significantly more eggs were laid on N 91‐1‐1‐1‐1 than on L. hirsutum varieties and 9‐wk‐old plants were preferred over plants three weeks older or younger. The same variety and plant age trends were evident in a free‐choice test using ex‐tomato adults.  相似文献   

12.
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) uses a flush‐and‐lacerate feeding strategy producing necrotic rings (NR) at feeding sites in tomato plants. The aim was to investigate the variation in the concentrations of amino acids (aa) and sugars at feeding sites, and its effect on this mirid's life‐history traits and behaviour. The concentration of nutrients was measured in different parts of stems damaged by N. tenuis and mechanically using liquid chromatography. aa concentrations increased below NR; around and above NR, the concentrations of essential and non‐essential aa declined. The concentration of glucose was lower around NR and below. The change in the distribution of aa was similar in NR and mechanically damaged stems, whereas there were no differences in sugar contents. Development time and nymphal mortality were measured on fresh leaflets, leaflets with NR and leaflets plus Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Without prey, development took longer on NR than on fresh leaflets. Development was quicker and mortality lower on leaflets plus moth eggs. Finally, behavioural events were recorded in fifth‐instar nymphs of N. tenuis in: (i) double‐choice experiments (DCE) using leaflets with and without NR; (ii) DCE using leaflets exposed and non‐previously exposed to nymphs and (iii) fresh tomato leaflets plus Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) nymphs. In (i), feeding events lasted longer at NR sites; in (ii), the behaviour of the nymphs on previously exposed leaflets was not significantly different from fresh leaflets; and in (iii), most of the time was dedicated to prey feeding. The overall results indicate that N. tenuis do not take advantage of the inhibited translocation of nutrients in the phloem. The poorer performance of nymphs on leaflets from plants previously exposed to N. tenuis might be due to a general decrease in the concentration of nutrients or to the activation of plant defences.  相似文献   

13.
The omnivorous predators Nesidiocoris tenuis (Reuter) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae) are indigenous natural enemies that commonly inhabit tomato crops in the Mediterranean basin. Both predators are mass-reared and primarily released to control whiteflies, although recently they have also contributed to the control of the invasive tomato pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). The life history traits of these two predators have been studied in the laboratory under the conditions of being fed exclusively the eggs of T. absoluta or the eggs of the factitious prey Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Immature stages of both predator species successfully developed while preying on eggs of T. absoluta. However, the mature M. pygmaeus females produced significantly lower numbers of offspring in comparison to the offspring produced when preying on E. kuehniella eggs. This resulted in higher than expected demographic indexes for N. tenuis when compared to M. pygmaeus (e.g., the intrinsic rates of increase were 0.127 and 0.005, respectively). Our results support previous studies on the potential of N. tenuis has as biological control agent of T. absoluta, and indicate that the role of M. pygmaeus in controlling T. absoluta in the absence of other food sources is possibly limited.  相似文献   

14.
1 The zoophytophagy of Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) was characterized in relation to prey availability and environmental factors by: (i) monitoring its population dynamics in tomato greenhouses; (ii) analysis of the influence of N. tenuis and whitefly density, temperature and humidity on the intensity of N. tenuis plant feeding; and (iii) laboratory assays under controlled conditions to determine the intensity of plant feeding in relation to prey availability, temperature and humidity. 2 A negative relationship was found between plant feeding and predated whiteflies in tomato greenhouses. Plant feeding was directly related to N. tenuis density and temperature and inversely related to whitefly density. The significance of prey availability and temperature was corroborated in laboratory assays. The intensification of plant feeding at low prey density indicates switching from zoophagy to phytophagy as prey become scarce. 3 Nesidiocoris tenuis showed a typical predator dynamic in relation to variance in prey density. Populations increased after whitefly outbreaks and decreased after whitefly had been depleted. The rapid decrease of N. tenuis populations after whitefly decreased, however, suggests that plants are a poorer nutrient source than whitefly for this species.  相似文献   

15.
The development time for eggs and nymphs and female fertility were determined for Nesidiocoris tenuis Reuter (Het., Miridae: Dicyphini) at 15, 20, 25, 30, 35 and 40 ± 1°C, using tomato, Solanum esculentum (Miller), as substrate and eggs of Ephestia kuehniella Zeller as substitute prey. At 40°C, N. tenuis was unable to develop and barely reproduced. Egg development ranged from 30.8 days at 15°C to 6.3 days at 35°C. The cumulative thermal requirements for the eggs were 148.6 degree days (°d) and the lower thermal threshold, 10.3°C. The duration of the nymphal instar decreased from 55.9 days at 15°C to 8.6 days at 35°C. The thermal constant for the nymphs was 182.3 °d and the lower thermal threshold 11.7°C. No nymphs survived at 40°C, and the highest mortalities were at extreme temperatures (15 and 35°C). Female and male weights were influenced significantly by temperature. The fertility of N. tenuis females was reduced greatly at 15 and 40°C. The highest fertility during an observation period of 18 days following female emergence (79.5–60.0 nymphs per female) was within the temperature range of 20 to 35°C. Fertility was related directly to female weight and temperature (r2 = 0.932). Based on development, reproduction data and thermal requirements, the optimum temperature range for N. tenuis was established as being between 20 and 30°C. Overall, N. tenuis is the most thermophilous of all dicyphines from vegetable crops in the Mediterranean area studied so far.  相似文献   

16.
The South American tomato pinworm, Tuta absoluta (Meyrick), is one of the major pests of tomato crop. Since its detection in the Mediterranean basin, it has been commonly controlled using chemical insecticides. However, inoculation and conservation of predatory mirids, integrated with sprays of selective insecticides, has been demonstrated to be a cost‐effective strategy for controlling this pest. In this work, we tested the efficacy of two sulphur formulations, dustable and wettable powder, for controlling T. absoluta on tomato under greenhouse and open‐field conditions. In addition, the side effects of both sulphur formulations on the predator, Nesidiocoris tenuis (Reuter), were evaluated under laboratory conditions. Dustable sulphur, applied weekly on tomato seedlings artificially infested with T. absoluta in greenhouse conditions, significantly reduced the infestation levels and was demonstrated to have a repellent effect on oviposition. Wettable sulphur was not effective for controlling T. absoluta populations in both greenhouse and open‐field experiments. In the side effect trials conducted with N. tenuis, only dustable sulphur resulted in being moderately harmful as a fresh residue and slightly harmful as a 7‐day‐old residue; no effects were recorded exposing the predator to 14‐day‐old sulphur residues. In contrast, wettable sulphur was classified as harmless to N. tenuis. Our results suggest that the use of sulphur, especially as dustable powder, could be considered as a tool in T. absoluta management strategies, although its side effects on Ntenuis should be taken into account. The implications of these results for the use of sulphur formulations in pest and disease management programmes in tomato crops are discussed.  相似文献   

17.
Nesidiocoris tenuis Reuter (Het.: Miridae) is widely used as a biological control agent of whiteflies and other pests in greenhouse-grown tomatoes. It is typically released augmentatively some weeks after transplanting and needs several weeks to establish. Releasing N. tenuis prior to transplanting could accelerate its establishment. However, timing for releases could affect biological control and require changes in release rates of the predator. Because N. tenuis is also phytophagous it must be released at a rate which provides the best equilibrium between adequate biological control of Bemisia tabaci Genn. and acceptable injury to the crop. The objective of this study was therefore to evaluate different release rates for releasing N. tenuis prior to transplanting for maximizing control capacity and minimizing injury to crop. The study was carried out in two subsequent trials in which different release rates were evaluated under a worst case scenario of rapid immigration of the pest into a tomato greenhouse. In the first experiment (winter experiment), four treatments were compared: (1) B. tabaci (0 N. tenuis/plant), (2) B. tabaci?+?0.5?N. tenuis/plant, (3) B. tabaci?+?1?N. tenuis/plant and (4) B. tabaci?+?2?N. tenuis/plant. In the second experiment (summer experiment), the treatments were: (1) B. tabaci (0 N. tenuis/plant), (2) B. tabaci?+?0.5?N. tenuis/plant and (3) B. tabaci?+?1?N. tenuis/plant. All the evaluated rates significantly reduced the population of whitefly and gave adequate control of the pest. However, only 0.5?N. tenuis/plant did not increase crop damage compared to the treatment with no N. tenuis.  相似文献   

18.
The influence of three host plants, namely cucumber, tomato and eggplant, on functional response of male, virgin and mated female predatory bug Nesidiocoris tenuis was investigated on different densities of Trialeurodes vaporariorum nymphs. The 24-h experiment conducted at laboratory conditions revealed that N. tenuis exhibited a type II functional response to T. vaporariorum on host plants. There were no significant differences between attack rates, as well as handling times estimated for each adult stage of the predator between host plants. However, on each host plant, the handling time estimated for the mated female in comparison with two other adult stages had lower values (0.7952, 0.6827 and 0.8884?h?1 on cucumber, tomato and eggplant, respectively). Handling time estimated for the mated female on cucumber was significantly lower than that estimated for the male predator. The highest maximum handling rate (T/Th) was estimated for the mated female followed by the virgin female and male on all host plants. For three adult stages of the predator, the highest value of this parameter was determined on tomato followed by cucumber and eggplant. Unlike virgin and mated females, the host plant significantly affected prey consumption by the male. Prey consumed by mated females was higher than those obtained for two other adult stages of the predator on each host plant. The difference in trichome density between three host plants may be responsible for the obtained results. These results revealed that N. tenuis is more effective in the biological control of T. vaporariorum on tomato in comparison with cucumber and eggplant.  相似文献   

19.
Dicyphus maroccanus Wagner and Nesidiocoris tenuis Reuter (Hemiptera: Miridae) are 2 biological control agents in tomatoes. Through the crop seasons, a natural shift in the occurrence of both mirids in favor of N. tenuis has been observed at the end of the cropping cycle in eastern Spain. To better optimize their conservation, the reasons for the observed change, such as intraguild interactions (IGP) or the influence of environmental conditions, are worth elucidating. To do this, we first studied the IGP of adult females on heterospecific nymphs in the laboratory. We next studied exploitative competition between adults and nymphs of each species when feeding on Ephestia kueniella Zeller (Lepidoptera: Pyralidae) eggs in the laboratory. Finally, to analyze the competitive displacement between both mirids, we conducted a semifield experiment in which both predators were released together. All experiments were conducted at 2 temperature regimes (20 and 25°C). Adult‐to‐nymph intraguild interactions occurred only at 25 ºC at very low levels, showing that N. tenuis attacked and consumed a greater proportion of heterospecific nymphs. Nesidiocoris tenuis was a better competitor than D. maroccanus when feeding on the shared prey in the presence of its heterospecific nymph at 25 ºC. In semifield conditions, N. tenuis showed a competitive advantage over D. maroccanus at both temperatures. We conclude that there is not direct interference between both species, however, N. tenuis has a greater ability to outcompete, since it is best adapted to higher temperatures and it is able to remove food sources for D. maroccanus.  相似文献   

20.
An early release system developed for Nesidiocoris tenuis Reuter (Heteroptera: Miridae) could provide a good control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato. Tuta absoluta and the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) often appear simultaneously in tomato crops and this might affect control capacity. Therefore, the new approach needs to be tested in a situation with both pests present. In addition, Bacillus thuringiensis Berliner and Trichogramma achaeae Nagaraja & Nagarkatti (Hymenoptera: Trichogrammatidae) have been shown to be effective against T. absoluta and could be a supplement to N. tenuis. Two experiments were carried out to evaluate the potential of this approach and its combination with supplementary control agents against T. absoluta. In the first experiment four treatments were compared (T. absoluta, B. tabaci, T. absoluta + N. tenuis, and T. absoluta + B. tabaci + N. tenuis) and N. tenuis was able to control T. absoluta and B. tabaci either alone or together. In the second experiment, five treatments were compared: T. absoluta, T. absoluta + N. tenuis, T. absoluta + N. tenuis + T. achaeae, T. absoluta + N. tenuis + B. thuringiensis, and T. absoluta + N. tenuis + T. achaeae + B. thuringiensis. Nesidiocoris tenuis again proved capable of significantly reducing T. absoluta populations, and the implementation of additional agents did not increase its effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号