首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species‐specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd‐related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long‐lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low‐elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant‐temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.  相似文献   

2.
    

Aim

Accurately documenting and predicting declines and shifts in species’ distributions is fundamental for implementing effective conservation strategies and directing future research; species distribution models (SDM) have become a powerful tool for such work. Nevertheless, much of the data used to create these models are opportunistic and often violate some of their basic assumptions. We use amphibian declines and extinctions linked to the fungus Batrachochytrium dendrobatidis (Bd) to examine how sampling biases in data collection can affect what we know of this disease and its effect on amphibians in the wild.

Location

Queensland, Australia.

Methods

We developed a distribution model for Bd incorporating known locality records for Bd and a subset of climatic variables that should correctly characterize its distribution. We tested this (original) model with additional surveys, recorded new Bd observations in novel environments and reran the distribution model. We then investigated the difference between the original and new models, and used frog abundance and infection status data from two of these new localities to look at the susceptibility of the torrent frog Litoria nannotis to chytridiomycosis.

Results

While largely correct, the original SDM underestimated the distribution of Bd; sampling in ‘unsuitable’ drier environments discovered abundant populations of susceptible frogs with pathogen prevalences of up to 100%. The validation surveys further uncovered a new population of the frog Litoria lorica coexisting with the pathogen; this species was previously believed to be an extinct rain forest endemic.

Main conclusion

Our results indicate that SDMs constructed using opportunistically collected data can be biased if species are not at equilibrium with their environment or because environmental gradients have not been adequately sampled. For disease ecology, the better estimations of pathogen distribution may lead to the discovery of new populations persisting at the edge of their range, which has important implications for the conservation of species threatened by chytridiomycosis.
  相似文献   

3.
    
Immune responses are costly, causing trade‐offs between defense and other host life history traits. Aphids present a special system to explore the costs associated with immune activation since they are missing several humoral and cellular mechanisms thought important for microbial resistance, and it is unknown whether they have alternative, novel immune responses to deal with microbial threat. Here we expose pea aphids to an array of heat‐killed natural pathogens, which should stimulate immune responses without pathogen virulence, and measure changes in life‐history traits. We find significant reduction in lifetime fecundity upon exposure to two fungal pathogens, but not to two bacterial pathogens. This finding complements recent genomic and immunological studies indicating that pea aphids are missing mechanisms important for bacterial resistance, which may have important implications for how aphids interact with their beneficial bacterial symbionts. In general, recent exploration of the immune systems of non‐model invertebrates has called into question the generality of our current picture of insect immunity. Our data highlight that taking an ecological approach and measuring life‐history traits to a broad array of pathogens provides valuable information that can complement traditional approaches.  相似文献   

4.
    
Phenotypes are the target of selection and affect the ability of organisms to persist in variable environments. Phenotypes can be influenced directly by genes and/or by phenotypic plasticity. The amphibian‐killing fungus Batrachochytrium dendrobatidis (Bd) has a global distribution, unusually broad host range, and high genetic diversity. Phenotypic plasticity may be an important process that allows this pathogen to infect hundreds of species in diverse environments. We quantified phenotypic variation of nine Bd genotypes from two Bd lineages (Global Pandemic Lineage [GPL] and Brazil) and a hybrid (GPL‐Brazil) grown at three temperatures (12, 18 and 24°C). We measured five functional traits including two morphological traits (zoospore and zoosporangium sizes) and three life history traits (carrying capacity, time to fastest growth and exponential growth rate) in a phylogenetic framework. Temperature caused highly plastic responses within each genotype, with all Bd genotypes showing phenotypic plasticity in at least three traits. Among genotypes, Bd generally showed the same direction of plastic response to temperature: larger zoosporangia, higher carrying capacity, longer time to fastest growth and slower exponential growth at lower temperatures. The exception was zoospore size, which was highly variable. Our findings indicate that Bd genotypes have evolved novel phenotypes through plastic responses to temperature over very short timescales. High phenotypic variability likely extends to other traits and may facilitate the large host range and rapid spread of Bd.  相似文献   

5.
    
Invasive fish threaten many native freshwater fauna. However, it can be difficult to determine how invasive fish impact animals with complex life cycles as interaction may be driven by either predation of aquatic larvae or avoidance of fish‐occupied waterbodies by the terrestrial adult stage. Mosquitofish (Gambusia spp.) are highly successful and aggressive invaders that negatively impact numerous aquatic fauna. One species potentially threatened by Gambusia holbrooki is the green and golden bell frog (Litoria aurea). However, G. holbrooki's role in this frog's decline was unclear due to declines driven by the chytrid fungal disease and the continued co‐existence of these fish and frogs in multiple locations. To clarify the extent to which Gambusia is impacting L. aurea, we conducted 3 years of field surveys across a deltaic wetland system in south‐east Australia. We measured the presence and abundance of aquatic taxa including G. holbrooki, and L. aurea frogs and tadpoles, along with habitat parameters at the landscape and microhabitat scale. Generalized linear models were used to explore patterns in the abundance and distributions of L. aurea and G. holbrooki. We found strong negative associations between G. holbrooki and tadpoles of most species, including L. aurea, but no apparent avoidance of G. holbrooki by adult frogs. Native invertebrate predators (Odonata and Coleoptera) were also absent from G. holbrooki‐occupied ponds. Due to the apparent naivety of adult frogs toward G. holbrooki, the separation of G. holbrooki and tadpoles, plus the abundance of alternative predators in G. holbrooki‐free ponds, we conclude that the impact of G. holbrooki on L. aurea recruitment is likely substantial and warrants management action.  相似文献   

6.
    
Studies of infection by Phytophthora infestans—the causal agent of potato late blight—in wild species can provide novel insights into plant defense responses, and indicate how wild plants might be influenced by recurrent epidemics in agricultural fields. In the present study, our aim was to investigate if different clones of Solanum dulcamara (a relative of potato) collected in the wild differ in resistance and tolerance to infection by a common European isolate of P. infestans. We performed infection experiments with six S. dulcamara genotypes (clones) both in the laboratory and in the field and measured the degree of infection and plant performance traits. In the laboratory, the six evaluated genotypes varied from resistant to susceptible, as measured by degree of infection 20 days post infection. Two of the four genotypes susceptible to infection showed a quadratic (concave downward) relationship between the degree of infection and shoot length, with maximum shoot length at intermediate values of infection. This result suggests overcompensation, that is, an increase in growth in infected individuals. The number of leaves decreased with increasing degree of infection, but at different rates in the four susceptible genotypes, indicating genetic variation for tolerance. In the field, the inoculated genotypes did not show any disease symptoms, but plant biomass at the end of the growing season was higher for inoculated plants than for controls, in‐line with the overcompensation detected in the laboratory. We conclude that in S. dulcamara there are indications of genetic variation for both resistance and tolerance to P. infestans infection. Moreover, some genotypes displayed overcompensation. Learning about plant tolerance and overcompensation to infection by pathogens can help broaden our understanding of plant defense in natural populations and help develop more sustainable plant protection strategies for economically important crop diseases.  相似文献   

7.
    
Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co‐evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance.  相似文献   

8.
Host‐parasite relationships are generally understudied in wild populations but have a potential to influence host population dynamics and the broader ecosystem, which becomes particularly important when the host is endangered. Herein we describe a new species of parasitic mite from the genus Ophiomegistus (Parasitiformes: Mesostigmata: Paramegistidae) of an endangered South Australian skink; the pygmy bluetongue lizard (Tiliqua adelaidensis). Adult mites were observed on lizard hosts in three different host populations, among which prevalence varied. No temporal trend in prevalence was evident over two spring‐summer seasons of monitoring. We hypothesise that the reliance on burrows as refuges by T. adelaidensis may be essential for the completion of the mite life cycle and also for horizontal transmission. The conservation implications of not only its effect on the host, but also its potential status as an endangered species itself, are considered.  相似文献   

9.
    
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

10.
    
The diverse benefits of group living include protection against predators through dilution effects and greater group vigilance. However, intraspecific aggregation can decrease developmental rates and survival in prey species. We investigated the impact on tadpole development and behaviour of the interaction between population density and predation risk. Spotted tree frog (Litoria spenceri: Hylidae, Dubois 1984) tadpoles were kept at one of three different densities (two tadpoles per litre, five tadpoles per litre or 10 tadpoles per litre) until metamorphosis in the presence or absence of predatory cues. We aimed to determine the influence of population density, predation and the interaction of both factors in determining growth rates in tadpoles. Tadpoles were measured weekly to assess growth and development and filmed to quantify differences in activity and feeding frequency between groups. Generally, tadpoles housed without predators had longer developmental periods when housed with a predator, but there was no effect on tail length or total length. There was no effect of either predation cues or density on percentage of individuals feeding or moving. Although the effects of the presence of predators alone may appear to be less than the effects of the presence of competitors, the prioritisation of competitiveness over predator avoidance may increase vulnerability of tadpoles to the lethal threat of predators. This is particularly important in species such as L. spenceri, which is at risk from introduced fish predators.  相似文献   

11.
    
Transplant studies can provide valuable information on the growth responses of epiphytic bryophytes and lichens to environmental factors. We studied the growth of six epiphyte species at three sites in moist Afromontane forests of Taita Hills, Kenya. With 558 pendant transplants, we documented the growth of four bryophytes and two lichens over 1 yr. The transplants were placed into the lower canopy of one forest site in an upper montane zone, and two forest sites in a lower montane zone. Several pendant moss species grew very well in the cool and humid environment of the upper montane forest, with some transplants more than doubling their biomass during the year. Conversely, all transplanted taxa performed poorly in the lower montane zone, presumably because of the unfavorable combination of ample moisture with excessive warmth and insufficient light which characterizes the lower canopy in dense lower montane forests. The results demonstrate that pendant transplants can be used for monitoring growth of non‐vascular epiphytes in tropical forests. The starting weight of 0.25 g for pendant transplants worked well and can be recommended for future studies.  相似文献   

12.
    
Habitat restoration is an integral feature of wildlife conservation. However, funding and opportunities for habitat restoration are limited, and therefore, it is useful for targeted restoration to provide positive outcomes for non‐target species. Here, we investigate the possibility of habitat creation and management benefitting two threatened wetland specialists: the Green and Golden Bell Frog (Litoria aurea) and the Large‐footed Myotis (Myotis macropus). This study involved two components: (i) assessing co‐occurrence patterns of these species in a wetland complex created for the Green and Golden Bell Frog (n = 9) using counts, and (ii) comparing foraging activity of Large‐footed Myotis in wetlands with low and high aquatic vegetation (n = 6 and 7, respectively) using echolocation metres. Since Large‐footed Myotis possesses a unique foraging behaviour of trawling for aquatic prey, we hypothesised that foraging activity of this species would be higher in wetlands with low aquatic vegetation coverage. Additionally, we provide observations of its potential prey items. We identified one created wetland where both species were found in relatively high numbers, and this wetland had a permanent hydrology, was free of the introduced fish Gambusia (Gambusia holbrooki) and had low aquatic vegetation coverage. We also found that Myotis feeding activity was significantly higher in low aquatic vegetation coverage wetlands (x? = 65.72 ± 27.56 SE) compared to high (x? = 0.33 ± 0.33 SE, P = 0.0000). Although this is a preliminary study, it seems likely that Green and Golden Bell Frog and Large‐footed Myotis would gain mutual benefit from wetlands that are constructed to be permanent, that are Gambusia free, low in aquatic vegetation coverage, and are located in close to suitable roosting habitat for Large‐footed Myotis. We encourage adaptive aquatic vegetation removal for Green and Golden Bell frog as this may have benefits for Large‐footed Myotis. The evidence suggests that the former may be a suitable umbrella species for the latter.  相似文献   

13.
14.
    
Hélène Cyr 《Freshwater Biology》2016,61(10):1655-1670
  1. Benthic algae form a major component of primary production in shallow waters and are an important component of lake food webs. I tested the effects of thermocline movements and bathymetric slope on the colonisation and population development of a ubiquitous and often dominant benthic diatom, Achnanthidium minutissimum.
  2. Sampling sites were positioned along the upwind and downwind shorelines of an elongated 22 km2 lake basin, on a range of bathymetric slopes (1–16%). A first set of substrates was deployed at eight sites during early stratification (June 19, 2004) and were sampled after 4, 11 and 20 days and 5.5 and 11 weeks to compare colonisation, establishment, early growth rate and density of mature populations. The second set of substrates was deployed at 16 sites in mid‐summer (July 26) and was sampled after 5.5 weeks. The density of A. minutissimum and their average cell length were measured in all samples. Thermocline movements were calculated using a 3D hydrodynamic model, which was calibrated offshore in the lake basin and validated at each sampling site.
  3. Achnanthidium colonised the open substrates very rapidly. Initial cell densities increased with increasing thermocline movement, especially along shallow bathymetric slopes. These results suggest an inverse relationship between thermocline‐induced nearshore turbulence and bathymetric slope.
  4. The density of early colonisers was reduced by 30–95% during the establishment period (4–11 days after substrate deployment), suggesting that Achnanthidium needs time to attach firmly to the substrate and is vulnerable to disturbances during that period. Achnanthidium established most efficiently at upwind nearshore sites exposed to more thermocline movement.
  5. The early growth rate of Achnanthidium in nearshore areas was negatively related to mean water temperature, a likely surrogate for nutrient availability at the sediment–water interface.
  6. The density of Achnanthidium in mature populations was positively related to thermocline movements and showed a negative interaction with bathymetric slope early in the stratification period, but not later in summer. These results suggest that physical forces associated with thermocline movements interact differently with the bottom in nearshore areas as the season progresses and as the water‐column stabilises.
  7. The size of Achnanthidium cells increased during settlement and early population growth, peaked in early July at most sites and decreased over the rest of the summer. This common pattern of seasonal change in Achnanthidium cell sizes suggests a strong factor synchronising its life cycle across the whole lake basin.
  8. Thermocline movements over nearshore substrates clearly affect the colonisation and population development of A. minutissimum. These results support the idea that wind‐driven physical forces are a major factor structuring nearshore habitats in lakes, even in the lower littoral zone, and that benthic organisms should distribute themselves in a predictable way around lake basins.
  相似文献   

15.
    
Host plant resistance can effectively manage Russian wheat aphid (Diuraphis noxia) Kurdjumov (Homoptera: Aphididae) in areas where it is an economically important pest of wheat. However, biotypes of D. noxia virulent on wheat containing resistance gene Dn4 have been reported in both the United States and South Africa. Thirty wheat genotypes, including susceptible Yuma, resistant CItr2401, as well as 25 genotypes containing Dn4 and three genotypes containing Dny were planted under greenhouse conditions in Bethlehem, South Africa, and screened with D. noxia biotype RWASA3. RWASA3 caused susceptible damage symptoms in MTRWA92‐145, Ankor, Halt, Bond CL, 18FAWWON‐SA 262, Prowers99, 18FAWWON‐SA 264, Hatcher, Yumar, Corwa and Thunder CL all reported to contain the Dn4 resistance gene. Genotypes PI586956, Stanton and 18FAWWON‐SA 257, containing the Dny‐resistance gene were susceptible to RWASA3. Similarly, coinciding development of virulence to resistance genes Dn4 and Dny was reported in the United States. However, in this study, 13 Dn4‐containing genotypes showed moderate resistance when screened with RWASA3 alluding to a more complex biotype‐gene‐interaction. These findings could indicate that Dn4 and Dny may be related and possibly share a similar or common resistance factor. Further studies will be aimed at explaining these results investigating the possibility of an allelic cluster or series for Dn4, possibly including Dny.  相似文献   

16.
    
Species of Lasiodiplodia are important pathogens of a wide variety of plants covering a wide geographical distribution. These fungi can be associated with different symptoms such as stem cankers, shoot blights, fruit rots, dieback and gummosis. Diseases caused by Lasiodiplodia were surveyed on Eucalyptus urophylla × grandis, Polyscias balfouriana and Bougainvillea spectabilis in a nursery in southern China. Based on morphology characteristics and phylogenetic analyses of ITS rDNA sequences and translation elongation factor 1‐alpha (TEF‐1α) gene regions, four species of Lasiodiplodia were identified. Lasiodiplodia theobromae was identified from E. urophylla × grandis, P. balfouriana and B. spectabilis. L. hormozganensis, L. iraniensis and L. pseudotheobromae were identified from B. spectabilis. To our knowledge, with the exception of L. theobromae on E. urophylla × grandis, this study represents the first report of these fungi on the host plants. Pathogenicity tests showed that all Lasiodiplodia spp. obtained in this study are virulent to E. urophylla × grandis and B. spectabilis, and L. theobromae was virulent to P. balfouriana.  相似文献   

17.
    
Eleven of eighteen Society Island Partula species endemic to the Windward Island subgroup (Moorea and Tahiti) have been extirpated by an ill‐advised biological control program. The conservation status of this critically endangered tree snail radiation is of considerable import, but is clouded by taxonomic uncertainty due to the extensive lack of congruence among species designations, diagnostic morphologies, and molecular markers. Using a combination of museum, captive, and remnant wild snails, we obtained the first high‐resolution nuclear genomic perspective of the evolutionary relationships and survival of fourteen Windward Island Partula species, totaling 93 specimens. We analyzed ~1,607–28,194 nuclear genomic loci collected with the double digest restriction‐site associated sequencing method. Results from phylogenomic trees, species estimation, and population assignment tests yielded monophyly of the Windward Island subgroup. Within this group, two well‐supported clades encompassing five species complexes were recovered. Clade 1 was restricted to Tahiti and contained two species complexes: “P. affinis” (three species) and “P. otaheitana” (five species). Clade 2 occurred on Moorea and on Tahiti and consisted of three species complexes: one Tahitian, “P. clara/P. hyalina”; the other two, “P. taeniata” (three species) and “P. suturalis” (six species), Moorean. Our genomic results largely corroborated previous mitochondrial DNA survival estimates for Moorea and Tahiti, with all five species complexes having members surviving in captivity and/or as remnant wild populations, although the details vary in each case. Continued, proactive conservation and management may yet ensure a phylogenetically representative survival of the fabled Partula species of Moorea and Tahiti.  相似文献   

18.
    
In 2010 and 2011, a disease exhibiting characteristics of white mold was found on Sedum sarmentosum, a crassulaceous weed under canopies of tea trees, in Zhushan County, Hubei Province, China. Based on the cultural and morphological characteristics, the pathogen was identified as Sclerotinia nivalis Saito. In the phylogenetic tree inferred from the internal transcribed spacer (ITS)‐rDNA sequences, the pathogen was clustered with five previously characterized isolates of S. nivalis, forming a unique clade, thus confirming the morpho‐cultural identification. Koch’s postulates were fulfilled by pathogenicity tests using the isolate SsSn‐24 and Let‐19 of S. nivalis on plants of S. sarmentosum. To our knowledge, this is the first report of S. nivalis on S. sarmentosum in the family Crassulaceae.  相似文献   

19.
    
Alternaria fungi are important plant pathogens. Here, we identified three species new to the Japanese mycoflora: Alternaria celosiae, Alternaria crassa and Alternaria petroselini. We proposed a new name for A. celosiae (E.G. Simmons & Holcomb) Lawrence, Park & Pryor, a later homonym of A. celosiae (Tassi) O. S?vul. To characterize these and a fourth morphological taxon, Alternaria alstroemeriae, which was recently added to Japan's mycoflora, an integrated species concept was tested. We determined the host range of each isolate using inoculation tests and analysed its phylogenetic position using sequences of the internal transcribed spacer rDNA. The pathogenicity of our A. alstroemeriae isolate was strictly limited to Alstroemeria sp. (Alstroemeriaceae), but the species was phylogenetically indistinguishable from other small‐spored Alternaria. Alternaria celosiae on Celosia argentea var. plumosa (Amaranthaceae) was also pathogenic to Amaranthus tricolor, to Alternanthera paronychioides and weakly to Gomphrena globosa (all Amaranthaceae) and formed a clade with the former Nimbya celosiae. Alternaria crassa on Datura stramonium (Solanaceae) was also pathogenic to Brugmansia × candida and Capsicum annuum in Solanaceae, but not to other confamilial plants; phylogenetically it belonged to a clade of large‐spored species with filamentous beaks. Morphological similarity, phylogenetic relationship and experimental host range suggested that Acrassa, Alternaria capsici and Alternaria daturicola were conspecific. Alternaria petroselini on Petroselinum crispum (Apiaceae) was pathogenic to five species in the tribe Apieae as well as representatives of Bupleureae, Coriandreae, Seliaeae and Scandiceae in Apiaceae. Both phylogeny and morphology suggested conspecificity between Apetroselini and Alternaria selini.  相似文献   

20.
1. A critical need in conservation biology is to determine which species are most vulnerable to extinction. Freshwater mussels (Bivalvia: Unionacea) are one of the most imperilled faunal groups globally. Freshwater mussel larvae are ectoparasites on fish and depend on the movement of their hosts to maintain connectivity among local populations in a metapopulation. 2. I calculated local colonisation and extinction rates for 16 mussel species from 14 local populations in the Red River drainage of Oklahoma and Texas, U.S. I used general linear models and AIC comparisons to determine which mussel life history traits best predicted local colonisation and extinction rates. 3. Traits related to larval dispersal ability (host infection mode, whether a mussel species was a host generalist or specialist) were the best predictors of local colonisation. 4. Traits related to local population size (regional abundance, time spent brooding) were the best predictors of local extinction. The group of fish species used as hosts by mussels also predicted local extinction and was probably related to habitat fragmentation and host dispersal abilities. 5. Overall, local extinction rates exceeded local colonisation rates, indicating that local populations are becoming increasingly isolated and suffering an ‘extinction debt’. This study demonstrates that analysis of species traits can be used to predict local colonisation and extinction patterns and provide insight into the long‐term persistence of populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号