共查询到20条相似文献,搜索用时 0 毫秒
1.
We apply mathematical modeling to explore different scenarios of invasion of a top predator (carnivorous zooplankton or planktivorous fish) into an epipelagic plankton ecosystem. We use a ‘minimal’ model of three nonlinear ordinary differential equations (nutrient–phytoplankton–herbivores) with the top predator density as a time-dependent parameter. The ecosystem shows different types of response, which can be described in terms of top-down trophic control. Our investigation indicates that under certain conditions the plankton ecosystem model demonstrates a surprising kind of response: in a wide range of realistic ecosystem parameters the invasion of the top predator leads to a prominent increase in the average density of zooplankton and to a resulting decrease of phytoplankton density. This phenomenon is opposite to the ‘typical’ top–down control when the carnivore pressure decreases zooplankton density which, in turn, increases phytoplankton biomass. We call the revealed type of top-down control ‘paradoxical’. Examples of such a response in natural aquatic ecosystems were reported earlier but no clear explanation has been provided hitherto. In this paper, we analyze possible mechanisms of ‘paradoxical top–down control’ and show that it can occur in eutrophic epipelagic ecosystems subject to high rate of cross-pycnocline exchange. 相似文献
2.
Joshua R. Anderson Angelo J. Spadaro J. Antonio Baeza Donald C. Behringer 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(1):87-98
Resource allocation theory predicts a disproportionately large allocation of resources to defensive structures during early ontogeny in organisms that are subject to more intense predation at smaller than at larger body sizes. We tested this prediction on the Caribbean spiny lobster Panulirus argus, which exhibits a negative relationship between predation risk and body size with a high natural mortality of smaller individuals. Independent allometric growth analyses demonstrated that numerous defensive structures (e.g. orbital horns, segments supporting the antenna, the tail fan) display negative allometric growth throughout ontogeny. We interpret these findings as lobsters investing disproportionately more resources to defensive structures when small to improve survivorship. Similarly, we observed an ontogenetic shift in lobster colour pattern; small individuals (< 23 mm carapace length) that inhabit nursery grounds (preferably among red algae) displayed a disruptive pattern (camouflage), whereas larger juveniles displayed a bicolour pigmentation typical of adult lobsters. This shift in colour pattern further suggests that small lobsters employ cryptic coloration throughout their asocial algal stage. However, this cryptic coloration offers no advantage when lobsters grow larger and start dwelling in crevices. Other structures linked to reproduction (e.g. female pleopods and male pereopods) experienced either isometric or positive allometric growth throughout ontogeny. Our results support one of the main predictions of resource allocation theory and demonstrate ontogenetic shifts in defensive structures and coloration concomitantly with changes in lobster mortality risk mediated by size‐dependent predation risk. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●. 相似文献
3.
Jrgen J. Leisner Niels O. G. Jrgensen Mathias Middelboe 《Evolutionary Applications》2016,9(3):427-434
Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic‐resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic‐producing bacteria. Thus, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics. In particular, we suggest that nutrient‐poor environments including indoor environments, for example, clean rooms and intensive care units may serve as a reservoir and source for antibiotic‐producing as well as antibiotic‐resistant bacteria. 相似文献
4.
Tz-Chian Chen;Mati Kahru;Michael R. Landry;Mark D. Ohman;Andrew R. Thompson;Michael R. Stukel; 《Ecology letters》2024,27(12):e14502
Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time-series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (excepting Prochlorococcus) and were generally more sensitive to marine heatwave intensity than duration. By contrast, mesozooplankton (as estimated by zooplankton displacement volume) were somewhat more strongly correlated with MHW duration than intensity. Zooplankton anomalies were also positively correlated with fucoxanthin (diatom) anomalies, highlighting possible bottom-up influences during MHWs. Mobile consumers (forage fish) showed more complex responses, with fish egg abundance declining during MHWs but not correlating with any MHW characteristics. Our findings provide partial evidence of how MHW characteristics can shape variable ecological responses due to the differing life spans and behaviours of different trophic levels. 相似文献
5.
Zeynep Ersoy Erik Jeppesen Serena Sgarzi Ignasi Arranz Miguel Cañedo‐Argüelles Xavier D. Quintana Frank Landkildehus Torben L. Lauridsen Mireia Bartrons Sandra Brucet 《Freshwater Biology》2017,62(11):1942-1952
- Trophic cascade studies have so far mostly focused on changes in the abundance, biomass, or average size of prey and predators. In contrast, individual size‐based interactions, playing a key role in the trophic structure and functioning of aquatic ecosystems, have been less explored.
- We conducted a 3‐month in situ experiment in Lake Mývatn, Iceland, with two fish treatments (with and without fish, Gasterosteus aculeatus). After the first month of the experiment, Anabaena blooms appeared in the lake. We studied the effects of fish predation and occurrence of cyanobacteria blooms on the individual size structure (i.e. the distribution of the number of organisms over a size range) of zooplankton and phytoplankton. We also assessed the potential consequences for trophic transfer efficiency (TTE) (measured as the predator to prey biomass ratio) in the planktonic food web.
- Our results showed that fish predation and cyanobacteria bloom had a negative relationship with size diversity of zooplankton, which became dominated by small‐sized individuals in both cases. The phytoplankton size diversity changed over time particularly due to the blooming of large‐sized Anabaena, and its increase was apparently mainly driven by changes in resources.
- Low zooplankton size diversity related to fish predation reduced TTE, particularly in the enclosures with fish. This may be because low zooplankton size diversity represents a lower partition of resources among consumers, thereby decreasing the trophic energy transfer. With the occurrence of Anabaena bloom, high phytoplankton size diversity coincided with a lower energy transfer in all enclosures likely due to reduced zooplankton grazing when large‐sized colony‐forming Anabaena dominated.
- In conclusion, our results indicate that both top‐down and bottom‐up forces significantly influence the size structure of planktonic communities. The changes in size structure were related to shifts in the energy transfer efficiency of the Lake Mývatn food web. Thus, our study underpins the importance of taking into account size‐based interactions in the study of trophic cascades, particularly in a warming climate where strong planktivorous fish predation and frequent cyanobacteria blooms may occur.
6.
于2000年调查了广东省18座大中型供水水库的水质现状并探讨了浮游生物对营养水平的响应。总氮、总磷、透明度和叶绿素a分别为0.15~7.15mg/L、0.003~0.387mg/L、0.4~6.3m和0.6~32.3ug/L。总氮、总磷、透明度均与叶绿素a呈较高的相关性。根据这4个因子的综合加权营养状态指数为23.7~55.1,季节差异不大,大多数水库处于中营养状态。金藻在中-富及富营养型水库中没有分布,而蓝藻、绿藻、硅藻和甲藻在调查水库中均有比较广的营养生态位,但它们的密度及相对优势度在各营养型水库中有一定的差异。高营养水平水库有较高的细胞密度和叶绿素a含量。营养水平较低的水库浮游植物以硅藻-甲藻、硅藻-绿藻或金藻-硅藻为主;营养水平较高的水库以蓝藻-硅藻或蓝藻-绿藻为主,并有较高的裸藻密度。浮游动物基本上以桡足类为优势种群,但在中-富营养和富营养型水库中,哲水蚤种类比低营养型水库中少。枝角类优势种类在各营养型水库差别不大。轮虫对水体营养水平的响应相对比较显著。低营养水平水库的轮虫以广营养型、中营养型或寡中营养型种类为主,种类数目比较少;富营养和中-富营养型水库的轮虫以喜在中营养到富营养条件下生长的种类为主,且轮虫种类数目比较多。 相似文献
7.
The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business‐as‐usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty‐first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid‐to‐high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change. 相似文献
8.
Henrik Österblom Sture Hansson Ulf Larsson Olle Hjerne Fredrik Wulff Ragnar Elmgren Carl Folke 《Ecosystems》2007,10(6):877-889
Abstract
The ecosystems of coastal and enclosed seas are under increasing anthropogenic pressure worldwide, with Chesapeake Bay, the
Gulf of Mexico and the Black and Baltic Seas as well known examples. We use an ecosystem model (Ecopath with Ecosim, EwE)
to show that reduced top-down control (seal predation) and increased bottom-up forcing (eutrophication) can largely explain
the historical dynamics of the main fish stocks (cod, herring and sprat) in the Baltic Sea between 1900 and 1980. Based on
these results and the historical fish stock development we identify two major ecological transitions. A shift from seal to
cod domination was caused by a virtual elimination of marine mammals followed by a shift from an oligotrophic to a eutrophic
state. A third shift from cod to clupeid domination in the late 1980s has previously been explained by overfishing of cod
and climatic changes. We propose that the shift from an oligotrophic to a eutrophic state represents a true regime shift with
a stabilizing mechanism for a hysteresis phenomenon. There are also mechanisms that could stabilize the shift from a cod to
clupeid dominated ecosystem, but there are no indications that the ecosystem has been pushed that far yet. We argue that the
shifts in the Baltic Sea are a consequence of human impacts, although variations in climate may have influenced their timing,
magnitude and persistence.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
9.
LUIS ABDALA‐ROBERTS JORGE C. BERNY‐MIER Y TERÁN KAILEN A. MOONEY YOLANDA B. MOGUEL‐ORDONEZ FELIPE TUT‐PECH 《Ecological Entomology》2014,39(3):361-370
- The magnitude of plant intra‐specific variation for indirect defence and the underlying plant traits influencing predators remain relatively unstudied, particularly in cultivated plants.
- We tested whether differences in flower number, pollen production, and leaf trichome density among 17 pepper (Capsicum annuum Linnaeus) varieties influenced the abundance and predation intensity by the omnivorous mite Amblyseius swirskii Athias‐Henriot.
- A greenhouse experiment was conducted where pepper plants were infested with thrips (Frankliniella cephalica Crawford DL) and subsequently exposed to A. swirskii. We estimated thrips and mite density based on arthropod counts conducted over a 4‐week period, and also performed flower and trichome counts, and estimated pollen production per anther.
- Significant differences were found among varieties for all three traits, as well as mite and thrips density. After accounting for all traits in a multiple regression model, we found that flower and trichome number had significant positive effects on mite density (by providing food and shelter, respectively). Increased mite density was in turn associated with a decrease in thrips density, presumably as a result of mite predation. Moreover, we found that flower number (but not trichome density) increased the strength of thrips suppression and that such an effect was mediated by mite density.
- These findings suggest that genetic variation for plant traits may indirectly influence herbivore suppression in peppers (although traits may vary in the strength or direction of their effects), and underscore the evolutionary potential and importance of selection not only for direct but also indirect resistance in crops.
10.
11.
Staffan Roos Jennifer Smart David W. Gibbons Jeremy D. Wilson 《Biological reviews of the Cambridge Philosophical Society》2018,93(4):1915-1937
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates. 相似文献
12.
David W.E. Hone Daniel J. Chure 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2018,51(3):456-466
Bite marks on the bones of dinosaurs are relatively rare for non‐tyrannosaur dominated faunas, and few have been described in detail. Here, we describe a femur of a young diplodocoid sauropod in the Carnegie Quarry (Late Jurassic Morrison Formation) at Dinosaur National Monument that shows extensive bite marks to the proximal part of the bone. This is the only record of bite marks from this extensive quarry of over 1500 vertebrate elements, making this a most unusual find. Identification of the tracemaker is difficult as multiple large theropods are known from the quarry. Furthermore, we show that subtly different actions of feeding can potentially result in very different spacing of bite marks making matches to tooth patterns in the jaws of potential bite makers very uncertain. Although identification is uncertain, the tracemaker is clearly not a tyrannosaurid, but the selective scrape feeding pattern seen here is similar to the of tyrannosaurid theropods. This technique may be more widely distributed among large carnivorous theropods than previously realized. 相似文献
13.
The rate that consumers encounter resources in space necessarily limits the strength of feeding interactions that shape ecosystems. To explore the link between encounters and feeding, we first compiled the largest available dataset of interactions in the marine benthos by extracting data from published studies and generating new data. These data indicate that the size‐scaling of feeding interactions varies among consumer groups using different strategies (passive or active) to encounter different resource types (mobile or static), with filter feeders exhibiting the weakest feeding interactions. Next, we used these data to develop an agent‐based model of resource biomass encounter rates, underpinned by consumer encounter strategy and resource biomass density. Our model demonstrates that passive strategies for encountering small, dispersed resources limits biomass encounter rates, necessarily limiting the strength of feeding interactions. Our model is based on generalisable assumptions, providing a framework to assess encounter‐based drivers of consumption and coexistence across systems. 相似文献
14.
Tiina Nges Juta Haberman Malle Timm Peeter Nges 《International Review of Hydrobiology》1993,78(4):513-519
The seasonal dynamics of the biomass and production of phyto-, zoo- and bacterioplankton was investigated during the vegetation periods (from May to November) in 1985 and 1986 in the pelagial of the large eutrophic lake Peipsi (Estonia). The average values of productions per vegetation period for the investigation years were as follows: phytoplanktion − 203.5 gC · m−2; bacterioplankton − 37.9 gC · m−2; filter-feeding zooplankton − 20.6 gC · m−2 and predatory zooplankton − 1.5 gC · m−2. The herbivorous zooplankton production constituted 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain — filtrators are feeding mostly on living algae and the detrital food chain seems of little importance. The dominance of large forms (Melosira sp., Aphanothece saxicola), in the phytoplankton during the major part of the vegetation period is assumed to be a result of high grazing pressure on small algae. Zooplankton grazing was investigated in situ in a specially constructed twin bathometer. Experimental measurements revealed, that zooplanktion presence in the experimental vessel actually stimulated the phytoplankton growth in many cases — the negative grazing values have been registered. That could be caused by the stimulation effect of nutrients (N, P), excreted by the concentrated zooplankton in the grazing chamber, which led to an increase of the nongrazed phytoplankton production. Bacteria have satisfied the zooplankton food requirements on average by 11%. Grazing on bacteria increased, when grazing on phytoplankton was somehow disturbed. 相似文献
15.
1. In some situations fish have strong top‐down effects in stream communities while in others they seem to be relatively unimportant. Differences in the impact of fish may depend on a variety of factors including the foraging mode of the fish, interactions among fish species and temporal variation in environmental conditions and species interactions. 2. We investigated the effect of brook trout (Salvelinus fontinalis) and mottled sculpin (Cottus bairdi) on lower trophic levels in Appalachian streams and whether or not interactions between these fish changed their influence. Mesocosms were placed in a headwater stream in a randomized complete block design. Within blocks, mesocosms were randomly assigned to one of the following treatments: (i) no fish; (ii) sculpin only; (iii) trout only and (iv) both sculpin and trout. Fish biomass was the same in all three fish treatments. Invertebrate density and algal biomass in mesocosms were determined after 3 weeks. We repeated the experiment in the autumn, spring and summer to test for seasonality of fish effects. 3. The effect of fish on invertebrate assemblages was seasonal and depended on prey identity. Sculpin strongly suppressed grazer abundance in spring while trout had little effect on grazers in any season. The influence of both fish on insect predators was similar and relatively constant across seasons. We found little evidence of an interaction between sculpin and trout that strongly influenced their effect on prey across seasons. 4. None of the fish treatments influenced algal biomass during any of the seasons. Algal growth was also seasonal, with a two‐ to four‐fold increase in algal biomass in spring compared to autumn and summer. 5. Our results indicate that benthic and drift feeding fish differ in their effects on some, but not all prey. Furthermore, fish effects on prey were strongly seasonal for some, but not all prey types. While the temporal context is not commonly considered, our results indicate seasonality can be an important component of predator–prey interactions in streams. 相似文献
16.
The last 15 years has seen parallel surges of interest in two research areas that have rarely intersected: biodiversity and ecosystem functioning (BEF), and multispecies predator–prey interactions (PPI). Research addressing role of biodiversity in ecosystem functioning has focused primarily on single trophic‐level systems, emphasizing additive effects of diversity that manifest through resource partitioning and the sampling effect. Conversely, research addressing predator–prey interactions has focused on two trophic‐level systems, emphasizing indirect and non‐additive interactions among species. Here, we use a suite of consumer‐resource models to organize and synthesize the ways in which consumer species diversity affects the densities of both resources and consumer species. Specifically, we consider sampling effects, resource partitioning, indirect effects caused by intraguild interactions and non‐additive effects. We show that the relationship between consumer diversity and the density of resources and consumer species are broadly similar for systems with one vs. two trophic levels, and that indirect and non‐additive interactions generally do little more than modify the impacts of diversity established by the sampling effect and resource partitioning. The broad similarities between systems with one vs. two trophic levels argue for greater communication between researchers studying BEF, and researchers studying multispecies PPI. 相似文献
17.
Geoffrey A. Parker Michael A. Ball James C. Chubb Katrin Hammerschmidt Manfred Milinski 《Evolution; international journal of organic evolution》2009,63(2):448-458
We investigate evolution of two categories of adaptive host manipulation by trophically transmitted helminths: (1) predation suppression decreases the host's mortality before the helminth is capable of establishing in its next host; (2) predation enhancement increases the existing host's mortality after it can establish in its next host. If all parasite mortality is purely random (time-independent), enhancement must increase predation by the next host sufficiently more (depending on manipulative costs) than it increases the average for all forms of host mortality; thus if host and parasite die only through random predation, manipulation must increase the \"right\" predation more than the \"wrong\" predation. But if almost all parasites die in their intermediate host through reaching the end of a fixed life span, enhancement can evolve if it increases the right predation, regardless of how much it attracts wrong predators. Although enhancement is always most favorable when it targets the right host, suppression aids survival to the time when establishment in the next host is possible: it is most favorable if it reduces all aspects of host (and hence parasite) mortality. If constrained to have selective effects, suppression should reduce the commonest form of mortality. 相似文献
18.
Lee R. Allen 《Ecological Management & Restoration》2015,16(1):58-66
Lethal control of wild dogs – that is Dingo (Canis lupus dingo) and Dingo/Dog (Canis lupus familiaris) hybrids – to reduce livestock predation in Australian rangelands is claimed to cause continental‐scale impacts on biodiversity. Although top predator populations may recover numerically after baiting, they are predicted to be functionally different and incapable of fulfilling critical ecological roles. This study reports the impact of baiting programmes on wild dog abundance, age structures and the prey of wild dogs during large‐scale manipulative experiments. Wild dog relative abundance almost always decreased after baiting, but reductions were variable and short‐lived unless the prior baiting programme was particularly effective or there were follow‐up baiting programmes within a few months. However, age structures of wild dogs in baited and nil‐treatment areas were demonstrably different, and prey populations did diverge relative to nil‐treatment areas. Re‐analysed observations of wild dogs preying on kangaroos from a separate study show that successful chases that result in attacks of kangaroos by wild dogs occurred when mean wild dog ages were higher and mean group size was larger. It is likely that the impact of lethal control on wild dog numbers, group sizes and age structures compromise their ability to handle large difficult‐to‐catch prey. Under certain circumstances, these changes sometimes lead to increased calf loss (Bos indicus/B. taurus genotypes) and kangaroo numbers. Rangeland beef producers could consider controlling wild dogs in high‐risk periods when predation is more likely and avoid baiting at other times. 相似文献
19.
Monika Winder Alfred Burian Michael R Landry David JS Montagnes Jens M. Nielsen 《Ecology letters》2016,19(11):1389-1391
A recent study concluded that omnivorous plankton will shift from predatory to herbivorous feeding with climate warming, as consumers require increased carbon:phosphorous in their food. Although this is an appealing hypothesis, we suggest the conclusion is unfounded, based on the data presented, which seem in places questionable and poorly interpreted. 相似文献
20.
Yuichi I. Naito Noah V. Honch Yoshito Chikaraishi Naohiko Ohkouchi Minoru Yoneda 《American journal of physical anthropology》2010,143(1):31-40
Nitrogen stable isotopes analysis of individual bone collagen amino acids was applied to archeological samples as a new tool for assessing the composition of ancient human diets and calibrating radiocarbon dates. We used this technique to investigate human and faunal samples from the Kitakogane shell midden in Hokkaido, Japan (5,300–6,000 cal BP). Using compound‐specific nitrogen isotope analysis of individual amino acids, we aimed to estimate i) the quantitative contribution of marine and terrestrial protein to the human diet, and ii) the mean trophic level (TL) from which dietary protein was derived from marine ecosystems. Data were interpreted with reference to the amino acid trophic level (TLAA) model, which uses empirical amino acid δ15N from modern marine fauna to construct mathematical equations that predict the trophic position of organisms. The TLAA model produced realistic TL estimates for the Kitakogane marine animals. However, this model was not appropriate for the interpretation of human amino acid δ15N, as dietary protein is derived from both marine and terrestrial environments. Hence, we developed a series of relevant equations that considered the consumption of dietary resources from both ecosystems. Using these equations, the mean percentage of marine protein in the Kitakogane human diet was estimated to be 74%. Although this study is one of the first systematic investigations of amino acid δ15N in archeological bone collagen, we believe that this technique is extremely useful for TL reconstruction, palaeodietary interpretation, and the correction of marine reservoir effects for radiocarbon dating. Am J Phys Anthropol 143:31–40, 2010. © 2010 Wiley‐Liss, Inc. 相似文献