首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how historical processes modulate the response of ecosystems to perturbations is becoming increasingly important. In contrast to the growing interest in projecting biodiversity and ecosystem functioning under future climate scenarios, how legacy effects originating from historical conditions drive change in ecosystems remains largely unexplored. Using experiments in combination with stochastic antecedent modelling, we evaluated how extreme warming, sediment deposition and grazing events modulated the ecological memory of rocky intertidal epilithic microphytobenthos (EMPB). We found memory effects in the non‐clustered scenario of disturbance (60 days apart), where EMPB biomass fluctuated in time, but not under clustered disturbances (15 days apart), where EMPB biomass was consistently low. A massive grazing event impacted on EMPB biomass in a second run of the experiment, also muting ecological memory. Our results provide empirical support to the theoretical expectation that stochastic fluctuations promote ecological memory, but also show that contingencies may lead to memory loss.  相似文献   

2.
How do antecedent (past) conditions influence land‐carbon dynamics after those conditions no longer persist? In particular, quantifying such memory effects associated with the influence of past environmental (exogenous) and biological (endogenous) conditions is crucial for understanding and predicting the carbon cycle. Here we show, using data from 42 eddy covariance sites across six major biomes, that ecological memory—decomposed into environmental and biological memory components—of daily net carbon exchange (NEE) is critical for understanding the land‐carbon metabolism, especially in drylands for which memory explains ~ 32% of the variation in NEE. The strong environmental memory in drylands was primarily driven by short‐ and long‐term moisture status. Moreover, the strength of environmental memory scales with increasing water stress. This universal scaling relationship, emerging within and among major biomes, suggests a potential adaptive response to water limitation. Our findings underscore the necessity of considering ecological memory in experiments, observations and modelling.  相似文献   

3.
While ecologists have long recognized the influence of spatial resolution on species distribution models (SDMs), they have given relatively little attention to the influence of temporal resolution. Considering temporal resolutions is critical in distribution modelling of highly mobile marine animals, as they interact with dynamic oceanographic processes that vary at time‐scales from seconds to decades. We guide ecologists in selecting temporal resolutions that best match ecological questions and ecosystems, and managers in applying these models. We group the temporal resolutions of environmental variables used in SDMs into three classes: instantaneous, contemporaneous and climatological. We posit that animal associations with fine‐scale and ephemeral features are best modelled with instantaneous covariates. Associations with large scale and persistent oceanographic features are best modelled with climatological covariates. Associations with mesoscale features are best modelled with instantaneous or contemporaneous covariates if ephemeral processes are present or interannual variability occurs, and climatological covariates if seasonal processes dominate and interannual variability is weak.  相似文献   

4.
We describe here the ecological and evolutionary processes that modulate the effects of invasive species over time, and argue that such processes are so widespread and important that ecologists should adopt a long-term perspective on the effects of invasive species. These processes (including evolution, shifts in species composition, accumulation of materials and interactions with abiotic variables) can increase, decrease, or qualitatively change the impacts of an invader through time. However, most studies of the effects of invasive species have been brief and lack a temporal context; 40% of recent studies did not even state the amount of time that had passed since the invasion. Ecologists need theory and empirical data to enable prediction, understanding and management of the acute and chronic effects of species invasions.  相似文献   

5.
Three landscape attributes are likely to have strong effects on the rate-dependent processes determining fish population dynamics in headwater streams: (1) functional interactions at terrestrial-aquatic ecotones and their influence on temporal and spatial variation in resource supply and predator-prey interactions, (2) large-scale spatial habitat relationships and their effect on resource use and fish movement, and (3) presence of refugia from harsh environmental conditions and their influence on fish survival and emigration/immigration rates. Elucidating how these factors interact over a range of temporal and spatial scales should be a major goal of lotic fish ecologists.  相似文献   

6.
Ecological memory describes how antecedent conditions drive the dynamics of an ecological system. Palaeoecological records are paramount to understand ecological memory at millennial time-scales, but the concept is widely neglected in the literature, and a formal approach is lacking. Here, we fill such a gap by introducing a quantitative framework for ecological memory in palaeoecology, and assessing how data constraints and taxa traits shape ecological memory patterns. We simulate the population dynamics and pollen abundance of 16 virtual taxa with different life and niche traits as a response to an environmental driver. The data is processed to mimic a realistic sediment deposition and sampled at increasing depth intervals. We quantify ecological memory with Random Forests, and assess how data properties and taxa traits shape ecological memory. We find that life-span and niche features modulate the relative importance of the antecedent values of the driver and the pollen abundance over periods of 240 yr and longer. Additionally, we find that accumulation rate and decreasing pollen-sampling resolution inflate the importance of antecedent pollen abundance. Our results suggest that: 1) ecological memory patterns are sensitive to varying accumulation rates. A better understanding on the numerical basis of this effect may enable the assimilation of ecological memory concepts and methods in palaeoecology; 2) incorporating niche theory and models is essential to better understand the nature of ecological memory patterns at millennial time-scales. 3) Long-lived generalist taxa are highly decoupled from the environmental signal. This finding has implications on how we interpret the abundance-environment relationship of real taxa with similar traits, and how we use such knowledge to forecast their distribution or reconstruct past climate.  相似文献   

7.
景观遗传学:概念与方法   总被引:2,自引:0,他引:2  
薛亚东  李丽 《生态学报》2011,31(6):1756-1762
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战,生物多样性保护必须由单纯的物种保护上升到栖息地景观的保护。景观遗传学是定量确定栖息地景观特征对种群遗传结构影响的一门交叉学科,在生物保护及自然保护区管理方面有巨大的潜力。从生物多样性保护的角度评述了景观结构与遗传多样性的关系,介绍了景观遗传学的基本概念,研究尺度和方法,并对景观遗传学当前的研究焦点及面临的挑战做了总结。  相似文献   

8.
一直以来,生态学家和进化生物学家对森林群落物种多样格局及其形成机制持有不同的观点。虽然Robert Ricklefs将进化和生态过程整合的观点已经被群落生态学家广泛接受,但是区域物种进化历史以及局域群落微进化过程是否能够影响群落生态学过程以及这些过程如何影响群落结构和动态还有待商榷。经典的生态位理论同时强调了种间和种内生态位分化对群落多样性维持的影响。但是生态学家普遍认为种间差异足以代表群落内个体间的相互作用关系,并且由于进化过程导致的种内分化往往涉及较长的时间尺度,因此,虽然种内差异是自然选择的重要材料,物种对环境的适应性进化过程所导致的种内分化对群落构建的影响往往被生态学家所忽视。为此,通过回顾种间和个体生态位分化的研究历史,对两类研究分别进行简要阐述,强调在今后的群落生态学研究中需要考虑个体分化对局域群落构建的影响。  相似文献   

9.
生态学中的植物记忆研究   总被引:1,自引:0,他引:1  
刘晓  宋姗姗  岳明 《生态学报》2019,39(24):9387-9395
近年来,植物记忆研究为深入理解种群分布格局、群落构建、群落演替等生态学过程提供了新的视角,因此备受生态学家的关注。在介绍生态胁迫记忆、表观遗传记忆、生态记忆、土壤记忆概念的基础上,综述了近几年来相关领域在生态学研究中的最新进展,并提出了植物记忆在生态学研究中值得关注的方向,以期为全面深入的理解生态学过程提供一个新的角度。  相似文献   

10.
11.
Phylogenetic methodologies for studying specialization   总被引:4,自引:0,他引:4  
D. Irschick  L. Dyer  T.W. Sherry 《Oikos》2005,110(2):404-408
Although the concept of specialization has played a central role in the development of ecological and evolutionary theory, important questions about specialization remain largely unanswered. We argue that the traditional division of specialization into evolutionary and ecological factors may be less useful than considering specialization as three components, which may not be mutually exclusive: ecological, behavioral, and functional. Many ecologists assume that these different aspects of specialization are necessarily correlated. However, this assumption has rarely been tested, but could be examined by using a phylogenetic approach. We argue that (1) ecologists should measure these different aspects of specialization within their respective organisms by placing measures of specialization on a standardized scale, and (2) should employ phylogenetic approaches for understanding how these components evolve. We argue that this approach will provide a more coordinated understanding of how specialization evolves.  相似文献   

12.
Tropical forests have long fascinated ecologists, inspiring a plethora of research into the mechanisms regulating their immense biodiversity, which originally captured the interests of early natural historians and explorers, and that still persists to this day. A new focus of this research emerged in the early 2000s highlighting the potential role of neutral (stochastic) processes in regulating the composition and diversity of tropical forest communities, and thus the maintenance of a large portion of global biodiversity (Hubbell, 2001). This strictly contrasted the long‐held belief that communities assembled via the sorting of species (and their abundances) via a deterministic response to local abiotic and biotic environmental conditions, reflecting the niche of each species (Leibold & McPeek, 2006). Yet, it is unlikely that the assembly of any community is solely governed by either stochastic or deterministic processes, but instead a combination of both. However, whether deterministic processes via niche‐based environmental sorting of species, or stochastic processes reflecting pattens of dispersal limitation, neutral effects and ecological drift dominate is often unclear. This prompts questions as to whether the relative influence of one process over another is dependent on the scale (spatial or temporal) or context of the study, or specific traits of the taxa under investigation (e.g., body size). In a From the Cover paper in this issue of Molecular Ecology, Zinger et al. (2018) tackle all these issues and show, among other things, that for soil microbes and mesofauna from tropical forests, the relative contribution of stochastic and deterministic processes in assembling their communities is strongly dependent on the body size or the studied taxa.  相似文献   

13.
Abstract. The plant functional types (growth forms) traditionally recognized by arctic ecologists provide a useful framework for predicting vegetation responses to, and effects on, ecosystem processes. These functional types are similar to those objectively defined by cluster analysis based on traits expected to influence ecosystem processes. Principal components analysis showed that two major suites of traits (related to growth rate and woodiness) explain the grouping of species into functional types. These plant functional types are useful because they (1) influence many ecological processes (e.g. productivity, transpiration, and nutrient cycling) in similar ways, (2) predict both responses to and effects on environment, including disturbance regime, and (3) show no strong relationship with traits determining migratory ability (so that no functional type will be eliminated by climatic change simply because it cannot migrate). Circumstantial evidence for the ecological importance of these functional types comes from the distribution of types along environmental gradients and the known ecological effects of traits (e.g., effects of litter quality on decomposition and of plant height on winter albedo) that characterize each functional type. The paleorecord provides independent evidence that some of these functional types have responded predictably to past climatic changes. Field experiments also show that plant functional types respond predictably to changes in soil resources (water and nutrients) but less predictably to temperature. We suggest that evidence for the validity of arctic plant functional types is strong enough to warrant their use in regional models seeking to predict the transient response of arctic ecosystems to global change.  相似文献   

14.
Abstract Although the scale-dependence of ecological patterns and processes is recognized by freshwater ecologists, current knowledge of scale effects is rudimentary and non-quantitative. We review issues of spatial and temporal scale in this paper to highlight conceptual problems relating to scale and some potential solutions. We present examples of how the spatial scale of a study influences observed patterns and their interpretation, and discuss how the size of an experimental arena influences the degree to which the dynamics of studied populations are influenced by exchange processes (immigration and emigration). The results of small-scale field experiments in streams will often be strongly influenced by the per capita exchange rates of organisms and differences in exchange rates may explain differences in the perceived effects of stream manipulations across scales. Spatial extent also influences the amount of spatial heterogeneity within a study site or arena, with important consequences for the outcome of predator-prey interactions. We suggest that changes in the availability of prey refuges may help explain why predator manipulations in streams appear to weaken as arena size increases. We also recommend that new techniques for decomposing and quantifying spatial heterogeneity be applied to characterize scale-dependent variation in freshwater systems. Lastly, we discuss the pitfalls of mismatching the temporal scale of experiments and models. Models incorporating spatial heterogeneity and the behaviour of organisms are needed to predict the short-term outcome of perturbations in streams, whereas models predicting long-term dynamics will need to integrate the impacts of episodic disturbance and all life history stages of organisms. In general, we recommend that freshwater ecologists undertake more multi-scale sampling and experimentation to examine patterns and processes at multiple scales, and make greater attempts to match the scales of their observations and experiments to the characteristic scales of the phenomena that they investigate.  相似文献   

15.
Bacterioplankton in freshwater streams play a critical role in stream nutrient cycling. Despite their ecological importance, the temporal variability in the structure of stream bacterioplankton communities remains understudied. We investigated the composition and temporal variability of stream bacterial communities and the influence of physicochemical parameters on these communities. We used barcoded pyrosequencing to survey bacterial communities in 107 streamwater samples collected from four locations in the Colorado Rocky Mountains from September 2008 to November 2009. The four sampled locations harboured distinct communities yet, at each sampling location, there was pronounced temporal variability in both community composition and alpha diversity levels. These temporal shifts in bacterioplankton community structure were not seasonal; rather, their diversity and composition appeared to be driven by intermittent changes in various streamwater biogeochemical conditions. Bacterial communities varied independently of time, as indicated by the observation that communities in samples collected close together in time were no more similar than those collected months apart. The temporal turnover in community composition was higher than observed in most previously studied microbial, plant or animal communities, highlighting the importance of stochastic processes and disturbance events in structuring these communities over time. Detailed temporal sampling is important if the objective is to monitor microbial community dynamics in pulsed ecosystems like streams.  相似文献   

16.
Predator‐induced plasticity has been in the focus of evolutionary ecological research in the last decades, but the consequences of temporal variation in the presence of cues predicting offspring environment have remained controversial. This is partly due to the fact that the role of early environmental effects has scarcely been scrutinized in this context while also controlling for potential maternal effects. In this study, we investigated how past environmental conditions, that is different combinations of risky or safe adult (prenatal) and oviposition (early post‐natal) environments, affected offspring's plastic responses in hatching time and locomotor activity to predation risk during development in the smooth newt (Lissotriton vulgaris). We found that females did not adjust their reproductive investment to the perceived level of risk in the adult environment, and this prenatal environment had generally negligible effect on offspring phenotype. However, when predator cues were absent during oviposition, larvae raised in the presence of predator cues delayed their hatching and exhibited a decreased activity compared to control larvae developing without predator cues, which responses are advantageous when predators pose a threat to hatched larvae. In the presence of predator cues during oviposition, the difference in hatching time persisted, but the difference in general locomotor activity disappeared between risk‐exposed and control larvae. Our findings provide clear experimental evidence that fine‐scale temporal variation in a predictive cue during and after egg‐laying interactively affects offspring phenotype, and highlight the importance of the early post‐natal environment, which may exert a substantial influence on progeny's phenotype also under natural conditions.  相似文献   

17.
Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics.  相似文献   

18.
Abstract Conceptual issues about scale, both spatial and temporal, have had considerable influence on the way in which ecologists view populations, communities and ecosystems. Scale includes two aspects: the extent over which a community or ecosystem is studied, and the resolution or ‘grain’ at which measurements or experiments are conducted. We illustrate the influence of extent and grain on perceptions of ecological patterns and processes, derived from fundamental measurements, field experiments and theory and modelling. These concepts provide background for a series of subsequent papers that were presented at a symposium on spatial and temporal scaling in freshwater systems. These papers conclude that multi-scale measurements and experiments plus novel methodologies for analysing large-scale surveys and manipulations should be priorities for future research in freshwater systems.  相似文献   

19.
Evolutionary ecologists are increasingly combining phylogenetic data with distributional and ecological data to assess how and why communities of species differ from random expectations for evolutionary and ecological relatedness. Of particular interest have been the roles of environmental filtering and competitive interactions, or alternatively neutral effects, in dictating community composition. Our goal is to place current research within a dynamic framework, specifically using recent phylogenetic studies from insular environments to provide an explicit spatial and temporal context. We compare communities over a range of evolutionary, ecological and geographic scales that differ in the extent to which speciation and adaptation contribute to community assembly and structure. This perspective allows insights into the processes that can generate community structure, as well as the evolutionary dynamics of community assembly.  相似文献   

20.
The metacommunity concept: a framework for multi-scale community ecology   总被引:13,自引:3,他引:13  
The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch‐dynamic view, the species‐sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio‐temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号