首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co‐occur randomly but are restricted in their co‐occurrence by interspecific competition. This concept can be redefined in a more general framework where the co‐occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive. Here we present a survey and meta‐analyses of 59 papers that compare observed patterns in plant communities with null models simulating random patterns of species assembly. According to the type of data under study and the different methods that are applied to detect community assembly, we distinguish four main types of approach in the published literature: species co‐occurrence, niche limitation, guild proportionality and limiting similarity. Results from our meta‐analyses suggest that non‐random co‐occurrence of plant species is not a widespread phenomenon. However, whether this finding reflects the individualistic nature of plant communities or is caused by methodological shortcomings associated with the studies considered cannot be discerned from the available metadata. We advocate that more thorough surveys be conducted using a set of standardized methods to test for the existence of assembly rules in data sets spanning larger biological and geographical scales than have been considered until now. We underpin this general advice with guidelines that should be considered in future assembly rules research. This will enable us to draw more accurate and general conclusions about the non‐random aspect of assembly in plant communities.  相似文献   

2.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

3.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

4.
Aim To test whether congeneric species are significantly associated with one another in space, either positively or negatively. Also, to provide a framework for a causal investigation of co‐occurrence patterns by a parallel comparison of interactions in geographical and ecological data matrices. Location For the analysis of congeneric species’ co‐occurrences we used 30 matrices covering a wide range of taxa and geographical areas, while for the causal investigation we used the distribution of 50 terrestrial isopod species on 20 islands and 264 sampling stations in the central Aegean archipelago, as well as a number of ecological variables for each sampling station. Methods We developed a software program (cooc ) that incorporates the species‐by‐species approach to co‐occurrence analysis using EcoSim's output of prior null model analysis of co‐occurrence. We describe this program in detail, and use it to investigate one of the most common assembly rules, namely, the decreased levels of co‐occurrence among congeneric species pairs. For the causal analysis, we proceed likewise, cross‐checking the results from the geographical and the ecological matrices. There is only one possible combination of results that can support claims for direct competition among species. Results We do not get any strong evidence for widespread competition among congeneric species, while most communities investigated do not show significant patterns of species associations. The causal analysis suggests that the principal factors behind terrestrial isopod species associations are of historical nature. Some exceptional cases are also discussed. Main conclusions Presence/absence data for a variety of taxa do not support the assembly rule that congeneric species are under more intense competition compared to less related species. Also, these same data do not suggest strong interactions among species pairs, regardless of taxonomic status. When significant species associations can be seen in such matrices, they mainly reflect the effects of history or of habitat requirements.  相似文献   

5.
The species saturation hypothesis in ground‐dwelling ant communities was tested, the relationship between local and regional species richness was studied and the possible processes involved in this relationship were evaluated in the present paper. To describe the relationship between local and regional species richness, the ground‐dwelling ant fauna of 10 forest remnants was sampled, using 10 1 m2 quadrats in each remnant. The ants were extracted from the litter by using Winkler sacs. Using regression analyses, an asymptotic pattern between local and regional species richness was detected. This saturated pattern may be related to three processes: (i) high interspecific competition; (ii) habitat species specialization; or (iii) stochastic equilibrium. It is concluded that non‐interactive processes, such as stochastic equilibrium and habitat specialization may act as factors regulating species richness in this community. The predominance of locally restricted species, in all sampled remnants, seems to indicate the occurrence of a high degree of habitat specialization by the ant species. This result is evidence for the hypothesis that community saturation has been generated by non‐interactive processes. Although ants are frequently described as highly interactive, it is possible that interspecific competition is not important in the structuring of ground‐dwelling ant communities.  相似文献   

6.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

7.
Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants’ capability in discerning plants’ chemical compounds (innate attraction) or by ants’ learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant’s learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.  相似文献   

8.
9.
Jessica R. Coyle 《Oikos》2017,126(1):111-120
Forest canopies are heterogeneous environments where changes in microclimate over short distances create an opportunity for niche‐based filtering of canopy‐dwelling species assemblages. This environmental filtering may not occur if species' physiological capacities are flexible or if rapid dispersal alleviates compositional differences. I assess the role of humidity, light and temperature gradients in structuring epiphyte communities in temperate deciduous oak (Quercus) canopies and determine whether gradients filter species with fixed traits or whether environmental constraints act primarily to alter individual phenotypes. I measured environmental conditions and seven functional traits related to water and light acquisition on individual macrolichens at 60 sample locations in northern red oaks Quercus rubra in two Piedmont forests in North Carolina, USA. The effects of environmental variables on individual‐level traits and community composition were evaluated using linear mixed models and constrained ordination (RDA). In general, traits and community composition responded weakly to environmental variables and trait variation within taxa was high. Cortex thickness exhibited the strongest response, such that individuals with thicker cortices were found in samples experiencing lower humidity and higher light levels. Overall, gradients of humidity, light and temperature were not strong environmental filters that caused large changes in community composition. This was probably due to phenotypic variability within taxa that enabled species to persist across the full range of environmental conditions measured. Thus, humidity affected the phenotype of individuals, but did not limit species distributions or alter community composition at the scale of branches within trees. Community and trait responses were primarily associated with site‐level differences in humidity, suggesting that in these forests landscape‐scale climatic gradients may be stronger drivers of epiphyte community assembly than intra‐canopy environmental gradients.  相似文献   

10.
Interaction networks within biotic communities can be dramatically altered by anthropogenic habitat modification. Ants, an important ecological group, often interact competitively to form mosaic‐like patterns in disturbed plantation habitats, in which dominant species form mutually exclusive territories. However, the existence of these ant mosaics in pristine forests is contentious. Here we assess the relative strengths of ant competitive interactions in oil palm plantation and primary rain forest in Sabah, Malaysia, using null models of species co‐occurrence. We use two metrics: the C‐score, which measures mean degree of overall co‐occurrence, and a novel metric, the Cvar‐score, which measures the variance in degree of co‐occurrence. We also investigate the role of nest sites by collecting ants from canopy and leaf litter microhabitats, and from epiphytic ferns, an important nest site for canopy ants. Furthermore, we assess whether non‐native species, which were widespread in oil palm plantation (61 occurrences vs five in rain forest) are important in driving the formation of ant mosaics. We found no evidence for ant mosaics in any primary forest microhabitat. In oil palm plantation, segregation between species was pronounced in epiphytes, weak in the rest of the canopy and absent in leaf litter communities. Intriguingly, exclusion of non‐native ant species from analyses increased the degree of negative species co‐occurrence in all three microhabitats, with species segregation in the oil palm canopy becoming statistically significant. Our results suggest that invasion of plantation habitats by non‐native species does not drive increased species segregation in ant communities. Rather, high degrees of species segregation might relate to changes in the importance of canopy nest sites, with colonies competing more strongly for these in plantations. In primary forests, weaker nest‐site limitation and the highly complex, more vertically stratified, non‐uniform canopy could lead to random co‐occurrence between ant species at the scales studied here.  相似文献   

11.
Invasions by non‐native insects can have important ecological impacts, particularly on island ecosystems. However, the factors that promote the success of invaders relative to co‐occurring non‐invasive species remain unresolved. For invasive ants, access to carbohydrate resources via interactions with both extrafloral nectary‐bearing plants and honeydew‐excreting insects may accelerate the invasion process. A first step towards testing this hypothesis is to determine whether invasive ants respond to variation in the availability of carbohydrate resources, and whether this response differs from that of co‐occurring, non‐invasive ants. We investigated the effect of carbohydrate subsidies on the short‐term foraging and hemipteran‐tending behaviours of the invasive ant Anoplolepis gracilipes (Formicidae) and co‐occurring ant species on an extrafloral nectary‐bearing plant by experimentally manipulating carbohydrate levels and tracking ant recruitment. We conducted experiments in 2 years at two sites: one site was invaded by A. gracilipes prior to 2007 and the other became invaded during the course of our study, allowing pre‐ (2007) and post‐invasion (2009) comparisons. Short‐term increases in carbohydrate availability increased the density of A. gracilipes workers on plants by as much as 400% and reduced tending of honeydew‐excreting insects by this species by up to 89%, with similar responses across years. In contrast, ants at the uninvaded site in 2007 showed a weak and non‐significant forager recruitment response. Across all sites, A. gracilipes workers were the only ants that responded to carbohydrate manipulations in 2009. Furthermore, ant–carbohydrate dynamics at a site newly invaded by A. gracilipes quickly diverged from dynamics at uninvaded sites and converged on those of the site with an established invasion. These findings suggest that carbohydrate resources may be particularly important for A. gracilipes invasions, and underscore the importance of species interactions, particularly putative mutualisms, in facilitating exotic species invasions.  相似文献   

12.
Jeremy W. Fox 《Oikos》2008,117(8):1153-1164
When do initial conditions, which reflect the assembly history of a community, affect the final community state? Comparative field studies and recent theory suggest that initial conditions matter at high productivity, because uninvasible alternate stable states and assembly cycles are more likely at high productivity. However, this prediction and the mechanisms behind it have not been tested experimentally. An alternative hypothesis is that initial conditions are relatively unimportant, and that communities generally are comprised of species with appropriate traits, which might vary with productivity. I assembled communities of protists and rotifers in laboratory microcosms from a species‐rich, trophically‐diverse species pool using all possible combinations of two initial conditions and four productivity levels. After communities approached their final states, invasions by the species that initially failed to persist tested the invasibility of those final states and tested for assembly cycles. I also examined how local (within‐microcosm) diversity and regional diversity (total species richness of all microcosms of a given productivity level) varied with productivity. Comparative field work has used such scale‐dependent diversity–productivity relationships as evidence for effects of assembly history. Productivity had a modest effect on final pre‐invasion species composition, while initial conditions had a very weak effect. Most invasions failed, and the frequency of successful invasions and of post‐invasion extinctions did not vary with productivity. Instead, species that were present most frequently pre‐invasion were also the most successful invaders, and the least‐likely species to go extinct post‐invasion. Local and regional richness did not vary substantially with productivity. Overall, the results suggest that final communities are predictably comprised of species with appropriate traits, and are not an unpredictable outcome of initial conditions.  相似文献   

13.
The relevance of neutral versus niche‐based community assembly rules (i.e. the processes sorting species present in a larger geographical region into local communities) remains to be demonstrated in ecology and biogeography. To attempt to do this, a number of complex null models are increasingly being used that compare observed community functional diversity (FD, i.e. the extent of trait dissimilarity between coexisting species) with randomly simulated FD. However, little is known about the performance of these null models in detecting non‐neutral community assembly rules such as trait convergence and divergence of communities (supposedly revealing habitat selection and limiting similarity, respectively). Here, using both simulated and field communities, I show that assembly rule detection varies systematically with the magnitude of the observed FD, so that these null models do not really succeed in breaking down the observed functional relationships between species. This is a particular concern, making detection of community assembly dependent on: (1) the pool of samples considered, and (2) the capacity of observed FD to correctly discriminate these rules. Null models should be more thoroughly described and validated before being considered as a magic wand to reveal assembly patterns.  相似文献   

14.
The Chaco is the largest dry forest biome in South America and one of the regions most threatened by agricultural intensification. As a consequence, in several areas Chaco forests persist as forest remnants of different sizes embedded in an agricultural matrix. Ants are social insects that have key roles in ecosystem functioning, and the effects of this ongoing land use change process on ant communities are little known for this region. In the present study, we assessed the consequences of land use replacement by monocultures and forest fragmentation on ant communities. Particularly, we assessed whether patch size, patch isolation and edge effect affect species richness and composition of ground‐dwelling ants in fragmented landscapes of Chaco forests. We collected ants by combining hand collecting and pitfall traps in 17 forest fragments and the surrounding matrix from two sites in Córdoba, Argentina. Patch size and patch isolation had no effect on ant richness; however, patch isolation and, to a lesser extent, patch size altered ant species composition. The ant community was not affected by edge but it was negatively affected by the crop matrix, which reduced richness and altered species composition. These results indicate that monoculture matrices severely affect ant communities in the Chaco forests, and that the effects of other indicators of habitat fragmentation (patch size and edge effect) are subtler and less relevant. In the present context of land use change, even small fragments could have an important value for the conservation of ant diversity.  相似文献   

15.
Background: Trait-based assembly rules are a powerful tool in community ecology, used to explore the pattern and process of community structure (richness and composition).

Aims: A preliminary test for the utility of trait-based assembly rules in explaining cryptogamic epiphyte communities (lichens and bryophytes).

Methods: We sampled epiphytes from three different tree species (aspen, birch and pine), and from trees of contrasting age. The community composition of epiphyte species (taxon analysis) and functional groups (trait analysis) was summarised using multivariate ordination (nonmetric multidimensional scaling, NMDS).

Results: Ordination documented a widely observed pattern in which different tree species have taxonomically different epiphyte communities. However, NMDS sample scores were correlated to tree age in the trait-based analysis, but not in the taxon analysis.

Conclusions: Our results point to the existence of a common pattern in community traits during succession (on trees of different age) when measured for epiphyte communities with contrasting taxonomic composition. This pattern is evidenced by consistent trends in lichen growth form and reproductive strategy (sexual vs. asexual).  相似文献   

16.
Species coexistence may result by chance when co‐occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size‐based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco‐evolutionary feedbacks.  相似文献   

17.
18.
Patterns of co‐occurrence of species are increasingly used to examine the contribution of biotic interactions to community assembly. We assessed patterns of co‐occurrence at four scales, in two types of tropical cloud forests in Hainan Island, China (tropical montane evergreen forests, TMEF and tropical dwarf forests, TDF) that varied significantly in soil nutrients and temperature. We tested if the patterns of co‐occurrence changed when we sorted species into classes by abundance and diameter at breast height (dbh). Co‐occurrence differed by forest type and with plot size, with significant species aggregation observed across larger plots in TDF and patterns of species segregation observed in smaller plots in TMEF. Analyses of differential abundance and dbh classes also showed that smaller plots in TMEF tend to have negative co‐occurrence patterns, but larger plots in TDF tend to show patterns of aggregation, suggesting competitive and facilitative interactions. This underscores the scale‐dependence of the processes contributing to community assembly. Furthermore, it is consistent with predictions of the stress gradient hypothesis that facilitation will be most important in biological systems subject to abiotic stress, while competition will be more important in less abiotically stressful habitats. Our results clearly demonstrate that these two types of tropical cloud forest exhibit different co‐occurrence patterns, and that these patterns are scale‐dependent, though independent of plant abundance and size class.  相似文献   

19.
Plant invasions are known to have negative impacts on native plant communities, yet their influence on higher trophic levels has not been well documented. Past studies investigating the effects of invasive plants on herbivores and carnivores have been largely observational in nature and thus lack the ability to tease apart whether differences are a cause or consequence of the invasion. In addition, understanding how plant traits and plant species compositions change in invaded habitats may increase our ability to predict when and where invasive plants will have effects that cascade to animals. To assess effects on arthropods, we experimentally introduced a non‐native plant (Microstegium vimineum, Japanese stiltgrass) in a community re‐assembly experiment. We also investigated possible mechanisms through which the invader could affect associated arthropods, including changes in native plant species richness, above‐ground plant biomass, light availability and vegetation height. In experimentally invaded plots, arthropod abundance was reduced by 39%, and species richness declined by 19%. Carnivores experienced greater reductions in abundance than herbivores (61% vs 31% reduction). Arthropod composition significantly diverged between experimentally invaded and control plots, and particular species belonging to the abundant families Aphididae (aphids), Formicidae (ants) and Phalacridae (shining flower beetles) contributed the most to compositional differences. Among the mechanisms we investigated, only the reduction in native plant species richness caused by invasion was strongly correlated with total arthropod abundance and richness. In sum, our results demonstrate negative impacts of M. vimineum invasion on higher trophic levels and suggest that these effects occur, in part, indirectly through invader‐mediated reductions in the richness of the native plant community. The particularly strong response of carnivores suggests that plant invasion could reduce top–down control of herbivorous species for native plants.  相似文献   

20.
Jodi N. Price  Meelis Pärtel 《Oikos》2013,122(5):649-656
Synthesis We used meta‐analyses to examine experimental evidence that functional similarity between invaders and resident communities reduces invasion. We synthesized evidence from studies that experimentally added seed to resident communities in which the functional group composition had been manipulated. We found communities containing functionally similar resident species reduced invasion of forb but not grass invaders. However, experimental design dramatically influenced the results – with evidence for limiting similarity only found in artificially assembled communities, and not when studies used functional group removal from more ‘natural communities’. We suggest that functional group similarity plays a limited role in biotic resistance in established communities. The principle of limiting similarity suggests that species must be functionally different to coexist; based on the assumption that inter‐specific competition should be greatest between functionally similar species. There has been controversy over the generality of this assembly rule for plant communities with some studies finding evidence for limiting similarity and others not. One approach to testing this is to examine the ‘invasion’ success of species into communities in which the functional group composition has been manipulated. Using a meta‐analysis approach, we examined the generality of limiting similarity for plant communities based on published experimental studies. We asked – is establishment of an invading species less successful if it belongs to a functional group that is already present in the community compared to a community in which that functional group is absent? We explored separately colonisation (i.e. germination, establishment or seedling survival) and performance (i.e. biomass, cover or growth) of different functional groups (forbs and grasses) and experimental designs (removal experiments of more or less natural communities and synthetic‐assemblage experiments). We found that communities containing functionally similar resident species did reduce invader colonisation and performance of forb invaders, but did not reduce colonisation or performance of grass invaders. Evidence in support of limiting similarity was only detected in synthetic‐assemblage experiments and not when studies used functional group removal from ‘natural’ communities. Functional similarity is an important aspect of biotic resistance for forb invaders, but was only found in artificial communities. This has implications for restoration ecology especially when communities are built de novo. However, we suggest that limiting similarity plays a limited role in biotic resistance, because no evidence was detected in established communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号