首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Developmental neurobiology》2017,77(11):1260-1268
The fission/division and fusion of mitochondria are fundamental aspects of mitochondrial biology. The balance of fission and fusion sets the length of mitochondria in cells to serve their physiological requirements. The fission of mitochondria is markedly induced in many disease states and in response to cellular injury, resulting in the fragmentation of mitochondria into dysfunctional units. The mechanism that drives fission is dependent on the dynamin related protein 1 (Drp1) GTPase. mdivi‐1 is a quinazolinone originally described as a selective inhibitor of Drp1, over other dynamin family members, and reported to inhibit mitochondrial fission. A recent study has challenged the activity of mdivi‐1 as an inhibitor of Drp1. This study raises serious issues regarding the interpretation of data addressing the effects of mdivi‐1 as reflective of the inhibition of Drp1 and thus fission. This commentary considers the evidence for and against mdivi‐1 as an inhibitor of Drp1 and presents the following considerations; (1) the activity of mdivi‐1 toward Drp1 GTPase activity requires further biochemical investigation, (2) as there is a large body of literature using mdivi‐1 in vitro with effects as predicted for inhibition of Drp1 and mitochondrial fission, reviewed herein, the evidence is in favor of mdivi‐1's originally described bioactivity, and (3) until the issue is resolved, experimental interpretations for the effects of mdivi‐1 on inhibition of fission in cell and tissue experiments warrants stringent positive controls directly addressing the effects of mdivi‐1 on fission. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1260–1268, 2017  相似文献   

2.
In mammals, lactation can be the most energetically expensive part of the reproductive cycle. Thus, when energy needs are compromised due to predation risk, environmental disturbance, or resource scarcity, future reproductive success can be impacted. In marine and terrestrial environments, foraging behavior is inextricably linked to predation risk. But quantification of foraging energetics for lactating animals under predation risk is less understood. In this study, we used a spatially explicit individual‐based model to study how changes in physiology (lactating or not) and the environment (predation risk) affect optimal behavior in dolphins. Specifically, we predicted that an adult dolphin without calf would incur lower relative energetic costs compared to a lactating dolphin with calf regardless of predation risk severity, antipredator behavior, or prey quality consumed. Under this state‐dependent analysis of risk approach, we found predation risk to be a stronger driver in affecting total energetic costs (foraging plus locomotor costs) than food quality for both dolphin types. Further, contrary to our hypothesis, after accounting for raised energy demands, a lactating dolphin with calf does not necessarily have higher relative‐to‐baseline costs than a dolphin without calf. Our results indicate that both a lactating (with calf) and non‐lactating dolphin incur lowered energetic costs under a risk‐averse behavioral scheme, but consequently suffer from lost foraging calories. A lactating dolphin with calf could be particularly worse off in lost foraging calories under elevated predation risk, heightened vigilance, and increased hiding time relative to an adult dolphin without calf. Further, hiding time in refuge could be more consequential than detection distance for both dolphin types in estimated costs and losses incurred. In conclusion, our study found that reproductive status is an important consideration in analyzing risk effects in mammals, especially in animals with lengthy lactation periods and those exposed to both biological and nonbiological stressors.  相似文献   

3.
The transition between planktonic growth and biofilm formation represents a tightly regulated developmental shift that has substantial impact on cell fate. Here, we highlight different mechanisms through which bacteria limit their own biofilm development. The mechanisms involved in these self‐inhibition processes include: (i) regulation by secreted small molecules, which govern intricate signalling cascades that eventually decrease biofilm development, (ii) extracellular polysaccharides capable of modifying the physicochemical properties of the substratum and (iii) extracellular DNA that masks an adhesive structure. These mechanisms, which rely on substances produced by the bacterium and released into the extracellular milieu, suggest regulation at the communal level. In addition, we provide specific examples of environmental cues (e.g. blue light or glucose level) that trigger a cellular response reducing biofilm development. All together, we describe a diverse array of mechanisms underlying self‐inhibition of biofilm development in different bacteria and discuss possible advantages of these processes.  相似文献   

4.
To be,or not to be,a non‐native freshwater fish?   总被引:9,自引:1,他引:9  
We examine the evolving concept of what constitutes a non‐native (or alien) freshwater fish. In an attempt to distinguish between biogeographical and socio‐political perspectives, we review the patterns in the introduction and dispersal of non‐native fishes in Europe and North America, and especially the recent expansion of Ponto‐Caspian gobies in Europe. We assess patterns in the development of national policy and legislation in response to the perceived threat of non‐native fish introductions to native species and ecosystems. We review, and provide a glossary of, the terms and definitions associated with non‐native species. Finally, we discuss perspectives as regards the future treatment of naturalized species.  相似文献   

5.
6.
Group‐living requires a compromise between safety and direct/indirect costs for individuals. The larger is the group, the greater is the collective vigilance, leading to a greater net food intake per forager because of the time saved individually from scanning behaviour. In turn, individual alertness usually decreases with increasing group size (“group‐size effect”). Information on the occurrence of group‐size effect is still unclear. Previous studies have shown that it may fail to occur or even reverse, for example when costs of interference between conspecifics are high. In turn, assessing whether the group‐size effect would occur in weakly or seasonally gregarious species may help to understand its drivers. We evaluated the occurrence and the extent of group‐size effect in a seasonally nongregarious herbivore, the roe deer Capreolus capreolus. We examined the roles of sex/age class and season as drivers of vigilance behaviour. In roe deer, the group‐size effect did not depend on sex/age class: time spent foraging increased with increasing group size; in turn, vigilance increased with decreasing group size, in all sex/age classes. Females with fawns were the most vigilant sex/age class, thus revealing the cost of offspring protection. Accordingly, the higher spring vigilance levels of does could be related to reproductive costs (e.g., defence of newborn fawns). Conversely, the greater summer vigilance of bucks could result from patrolling/defence of territories. Both adult males and females also showed the higher vigilance in winter, likely because of an increase in the perception of predation risk and/or, possibly, hormones linked to an increase in intolerance of conspecifics, in males. However, the group‐size effect occurred in all the seasons, for adult males and females. Our findings suggest that foraging benefits provided by the group‐size effect may have overcome costs of group‐living, even in a weakly gregarious forager.  相似文献   

7.
Conventional kinesin and Eg5 are essential nanoscale motor proteins. Single-molecule and presteady-state kinetic experiments indicate that both motors use similar strategies to generate movement along microtubules, despite having distinctly different in vivo functions. Single molecules of kinesin, a long-distance cargo transporter, are highly processive, binding the microtubule and taking 100 or more sequential steps at velocities of up to 700 nm/s before dissociating, whereas Eg5, a motor active in mitotic spindle assembly, is also processive, but takes fewer steps at a slower rate. By dissecting the structural, biochemical and mechanical features of these proteins, we hope to learn how kinesin and Eg5 are optimized for their specific biological tasks, while gaining insight into how biochemical energy is converted into mechanical work.  相似文献   

8.
9.
Parasite manipulation of host behaviour is a compelling example of the extended phenotype. However, in many cases, such manipulation may be incorrectly assumed. Previous work has demonstrated that Austrovenus stuchburyi cockles stranded on mud-flat surfaces due to an inability to re-burrow both contain significantly more metacercariae of the trematode Curtuteria australis and are predated by the definitive host of this parasite at a faster rate than burrowed cockles. These results have been interpreted as strong evidence for a manipulation of cockle behaviour by the trematode to facilitate transmission to the definitive host. The model presented here, however, indicates that the selective advantage to the parasite of the altered host behaviour is currently of a negligible level at our study site that is highly unlikely to have been realized as an adaptation over evolutionary time. Hence, there are no grounds on which the more parsimonious explanation, that the altered host behaviour observed is simply an incidental side-effect of infection, can be rejected. We thus maintain that for any change in the behaviour of infected hosts to be confirmed as potentially a parasite trait that has evolved in response to selection, the adaptive benefit taking into account the entire parasite life cycle may need to be considered.  相似文献   

10.
The role of positive interactions has become widely accepted as a mechanism shaping community dynamics. Most empirical evidence comes from plant communities and sessile marine organisms. However, evidence for the relative role of positive interactions in organizing terrestrial animal communities is more limited, and a general framework that includes positive interactions among animals is lacking. The ‘stress gradient hypothesis’ (SGH) developed by plant ecologists predicts that the balance between positive and negative interactions will vary along gradients of biotic and abiotic stress, with positive interactions being more important in stressful environments. Paralleling the SGH, stress gradients for terrestrial herbivores could be equated to inverse primary productivity gradients, so we would expect positive interactions to prevail in more stressful, low productivity environments. However, this contradicts the typical view of terrestrial animal ecology that low primary productivity systems will foster intense competition for resources among consumers. Here we use alpine herbivores as a case study to test one of the predictions of the SGH in animal communities, namely the prevalence of positive interactions in low productivity environments. We identify potential mechanisms of facilitation and review the limited number of examples of interspecific interactions among alpine herbivores to assess the role of positive and negative interactions in structuring their communities. A meta‐analysis showed no clear trend in the strength and direction of interactions among alpine herbivores. Although studies were biased towards reporting significant negative inter actions, we found no evidence of competition dominating in harsh environments. Thus, our results only partially support the SGH, but directly challenge the dominant view among animal ecologists. Clearly, a sound theoretical framework is needed to include competition, positive and neutral interactions as potential mechanisms determining the structure of animal communities under differing environmental conditions, and the stress‐gradient hypothesis can provide a solid starting point.  相似文献   

11.
Aims: Enterococcus faecalis is associated with a significant number of refractory endodontic infections. Previous studies report a prevalence of Ent. faecalis ranging from 24% up to 77% in teeth with failed endodontic treatment. The origin of the micro‐organism remains unclear, as enterococci do not belong to the normal oral microflora. The aim of this study was to determine whether these enterococci were of endogenous or exogenous origin. Methods and Results: Fifty consecutive patients with apical periodontitis in need of endodontic orthograde re‐treatment were included. Samples were collected from root canals, saliva and faeces and subjected to microbiological culturing. The genetic relationship between Ent. faecalis from root canals and isolates from the different host sources was determined using pulsed‐field gel electrophoresis. In 16% (8/50) of the patients, enterococci were collected from the root canal samples. The genetic analysis showed that the isolates from the root canals were not related to those from the normal gastrointestinal microflora. None of these patients had enterococci in their saliva samples. Conclusions: Endodontic infections with Ent. faecalis are probably not derived from the patient’s own normal microflora, which indicates that these infections ent. faecalis are of exogenous origin. Significance and Impact of the Study: This is the first study to genetically compare endodontic infectious Ent. faecalis isolates with isolates from the hosts’ own normal microflora.  相似文献   

12.
Identifying where animals come from during population recovery can help to understand the impacts of disturbance events and regimes on species distributions and genetic diversity. Alternative recovery processes for animal populations affected by fire include external recolonization, nucleated recovery from refuges, or in situ survival and population growth. We used simulations to develop hypotheses about ecological and genetic patterns corresponding to these alternative models. We tested these hypotheses in a study of the recovery of two small mammals, the Australian bush rat and the agile antechinus, after a large (> 50 000 ha), severe wildfire. The abundance of both species was severely reduced by fire and recovered to near or above pre‐fire levels within two generations, yet we rejected a hypothesis of recovery by external recolonization. While the agile antechinus showed genetic evidence for far greater dispersal capacity than the bush rat, neither species showed gradients in abundance or genetic diversity with distance from unburnt forest during population recovery. Population recovery was driven by local‐scale processes. However, the mechanisms differed between species, resulting from the spatial impacts of fire on habitat suitability. Agile antechinus populations recovered through population growth from in situ survivors. The bush rat followed a model of nucleated recovery, involving local recolonization from micro‐refuges in topographic drainage lines. Nucleated recovery by the bush rat was associated with changes in dispersal, and fine‐scale patterns of genetic admixture. We identified increased dispersal by females during recovery, contrasting with male‐biased dispersal in unburnt forest. Such flexibility in dispersal can potentially increase recovery rates compared to expectations based on dispersal behavior within undisturbed populations. Our study shows how the initial distribution of survivors, determined by fire effects on resource distribution, determines the subsequent scaling of population recovery patterns, and the sensitivity of population distribution and genetic diversity to changing disturbance regimes.  相似文献   

13.
Hormones underlie the decision of assuming a territorial or a nonterritorial role, with territorial individuals usually having higher hormonal levels than nonterritorial individuals. As a territorial status is linked to higher mating opportunities, it is unclear why animals do not keep high hormonal levels and one explanation is that this would imply survival costs. We have tested this using males of the territorial damselfly Argia emma in the field. We increased juvenile hormone (JH) levels using methoprene in both territorial and nonterritorial males and predicted that: (i) males will keep (the case of territorial males) or become (the case of nonterritorial males) territorial after hormonal increase, and (ii) there will be an increase in mating success for nonterritorial males only and an impaired survival for both male tactics. Hormonally treated males remained or became territorial but had their survival impaired compared with control groups. Also, hormonally treated, ex‐nonterritorial males increased their mating success compared with the other control, nonterritorial males. The reduced survival can be explained proximally by the energy devoted either to the enhanced aggression showed during territory defence or immune function (as detected previously in damselflies). Although nonterritorial males may increase their mating success by switching to a territorial tactic, they are possibly unable to do it naturally as JH is dietary dependent and usually nonterritorial animals are in poorer condition than territorial animals.  相似文献   

14.
15.
Coevolutionary studies on plants and plant‐feeding insects have significantly improved our understanding of the role of niche shifts in the generation of new species. Evolving plant lineages essentially constitute moving islands and archipelagoes in resource space, and host shifts by insects are usually preceded by colonizations of novel resources. Critical to hypotheses concerning ecological speciation is what happens immediately before and after colonization attempts: if an available plant is too similar to the current host(s), it simply will be incorporated into the existing diet, but if it is too different, it will not be colonized in the first place. It thus seems that the probability of speciation is maximized when alternative hosts are at an ‘intermediate’ distance in resource space. In this review, I wish to highlight the possibility that resource similarity and, thus, the definition of ‘intermediate’, are subjective concepts that depend on the herbivore lineage's tolerance to dietary variation. This subjectivity of similarity means that changes in tolerance can either decrease or increase speciation probabilities depending on the distribution of plants in resource space: insect lineages with narrow tolerances are likely to speciate by ‘island‐hopping’ on young, species‐rich plant groups, whereas more generalized lineages could speciate by shifting among resource archipelagoes formed by higher plant taxa. Repeated and convergent origins of traits known to broaden or to restrict host‐plant use in multiple different insect groups provide opportunities for studying how tolerance and resource heterogeneity may interact to determine speciation rates.  相似文献   

16.
Resorption is the process by which nutrients are withdrawn from leaves prior to leaf fall. Mistletoes are generally thought not to rely on nutrient resorption; being xylem‐tapping parasites, they instead derive the nutrients required for new growth from their host plant, at little or no cost. We measured nutrient (N, P, K, Ca, Mg) resorption in 18 parasitic mistletoe–host species pairs distributed across three sites with notably low‐P soil, also quantifying relationships with leaf lifespan (LL) and specific leaf area (SLA). There was little or no evidence of N, Ca or Mg resorption. By contrast, on average ~30% of P and ~20% of K were resorbed prior to leaf fall. Longer LL in mistletoes was associated with lower N and P concentrations in mistletoes and in host leaves. We provide evidence that, even though mistletoes are relatively inefficient in terms of nutrient resorption compared to non‐parasite species, on low‐P soils their ecological and evolutionary strategies for conserving phosphorous involve modulation of both leaf lifespan and P concentration in senesced leaves.  相似文献   

17.
In many ruminant species, males dramatically reduce forage intake during the rut. To date, different hypotheses have been suggested to explain this rut‐induced hypophagia. To assess the predictions of the main hypotheses, we analysed Alpine ibex (Capra ibex) activity budget and compared the behaviour of males and females before, during, and after the rut. Only males spent significantly less time foraging during the rut than outside of it, whereas females allocated a similar proportion of time to foraging before, during, and after the rut. Our results showed that during the rut males also reduced lying time, while the ratio of time spent feeding to time spent lying did not change for males among periods. In conclusion, during the breeding season males maximized energy intake when not actively engaged in mating activities and rut‐induced hypophagia appeared to result from time budget constraints generated by mating‐related activities. Accordingly, the foraging constraint hypothesis seems appropriate to explain this phenomenon in Alpine ibex males.  相似文献   

18.
Being a member of a cohesive group can have fitness benefits such as decreased predation risk, increased feeding efficiency as well as enhanced access to social information and mates. However, competition and the risk of parasite transmission exert centrifugal forces on group‐living. Thus, the actual degree of cohesion is expected to vary as a function of the relative importance of several social and ecological factors. White‐breasted mesites Mesitornis variegata are medium‐sized ground‐dwelling birds endemic to the dry deciduous forests of western Madagascar. They live in stable breeding pairs or small family groups, mate monogamously and often form temporary heterospecific associations with canopy‐dwelling bird species that give alarm calls to which mesites respond with anti‐predator behaviours. We investigated the potential effects of predation risk and mate defence on mesite group cohesion by analysing inter‐individual distances of 20 groups as a function of mesite social organization, alarm call events, the size of associated heterospecific flocks, and the adults' reproductive state. Mesite social units were very cohesive, particularly in families, when associated with smaller heterospecific flocks, and after an alarm call event. Adult reproductive state did not influence breeding partners' cohesion. Therefore, the pronounced group cohesion in mesites seems to be mainly a response to the high predation risk typically associated with a terrestrial life‐style, and not to mate‐guarding. However, we suggest that high group cohesion due to predation risk could limit opportunities for solitary extra‐territorial forays to obtain extra‐pair copulations, thereby contributing to a strictly monogamous system in this species.  相似文献   

19.
The portfolio of impacts that are quantified in life cycle assessment (LCA) has grown to include rather different stressors than those that were the focus of early LCAs. Some of the newest life cycle impact assessment (LCIA) models are still in an early phase of development and have not yet been included in any LCA study. This is the case for sound emissions and noise impacts, which have been only recently modeled. Sound emissions are matter‐less, time dependent, and bound to the physical properties of waves. The way sound emissions and the relative noise impacts are modeled in LCA can show how new or existing matter‐less impacts can be addressed. In this study, we analyze, through the example of sound emissions, the specific features of a matter‐less impact that does not stem from the use of a kilogram of matter, nor is related to the emission of a kilogram of matter. We take as a case study the production of energy by means of wind turbines, contradicting the commonly held assumption that windmills have no emissions during use. We show how to account for sound emissions in the life cycle inventory phase of the life cycle of a wind turbine and then calculate the relative impacts using a noise LCIA model.  相似文献   

20.
Two hypotheses have been proposed to explain the abundance–occupancy relationship (AOR) in parasites. The niche breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade‐off hypothesis argues that host specialists achieve high density across their hosts' ranges, whereas generalists incur the high cost of adaptation to diverse immuno‐defence systems. We tested these hypotheses using 386 haemosporidian cytochrome‐b lineages (1894 sequences) recovered from 2318 birds of 103 species sampled in NW Africa, NW Iberia, W Greater Caucasus and Transcaucasia. The number of regions occupied by lineages was associated with their frequency suggesting the presence of AOR in avian Haemosporidia. However, neither hypothesis provided a better explanation for the AOR. Although the host generalist Plasmodium SGS1 was over three times more abundant than other widespread lineages, both host specialists and generalists were successful in colonizing all study regions and achieved high overall prevalence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号