首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life history of thoracican barnacles within a strict phylogenetic framework. We collected environmental and larval trait data for 170 species from the literature, and utilized a complete thoracican synthesis tree to account for phylogenetic nonindependence. In accordance with Thorson's rule, the fraction of species with planktonic‐feeding larvae declined with water depth and increased with water temperature, while the fraction of brooding species exhibited the reverse pattern. Species with planktonic‐nonfeeding larvae were overall rare, following no apparent trend. In agreement with the “size advantage” hypothesis proposed by Strathmann in 1977, egg and larval size were closely correlated. Settlement‐competent cypris larvae were larger in cold water, indicative of advantages for large juveniles when growth is slowed. Planktonic larval duration, on the other hand, was uncorrelated to environmental variables. We conclude that different selective pressures appear to shape the evolution of larval life history in barnacles.  相似文献   

2.
Anticipatory parental effects (APE's) occur when parents adjust the phenotype of their offspring to match the local environment, so as to increase the fitness of both parents and offspring. APE's, as in the evolution of adaptive phenotypic plasticity more generally, are predicated on the idea that the parental environment is a reliable predictor of the offspring environment. Most studies on APE's fail to explicitly consider environmental predictability so risk searching for APE's under circumstances where they are unlikely to occur. This failure is perhaps one of the major reasons for mixed evidence for APE's in a recent meta‐analysis. Here, we highlight some often‐overlooked assumptions in studies of APE's and provide a framework for identifying and testing APE's. Our review highlights the importance of measuring environmental predictability, outlines the minimal requirements for experimental designs, explains the important differences between relative and absolute measures of offspring fitness, and highlights some potential issues in assigning components of offspring fitness to parental fitness. Our recommendations should result in more targeted and effective tests of APE's. Synthesis A decent set of theory is available to understand when certain kinds of parental effects might act to increase parental fitness (i.e. be ‘adaptive’). This theory could be better incorporated into empirical studies on anticipatory parental effects (APE's). Here, we provide practical advice for how empirical studies can more closely align with the theoretical underpinnings of adaptive parental effects. In short, robust inferences on APE's require quantitative estimates of environmental predictability in the field over the space and time scales relevant to the life history of the study organism as well as an understanding of when to use absolute or relative offspring fitness.  相似文献   

3.
Many marine benthic invertebrates pass through a planktonic larval stage whereas others spend their entire lifetimes in benthic habitats. Recent studies indicate that non‐planktonic species show relatively greater fine‐scale patchiness than do planktonic species, but the underlying mechanisms remain unknown. One hypothesis for such a difference is that larval dispersal enhances the connectivity of populations and buffers population fluctuations and reduces local extinction risk, consequently increasing patch occupancy rate and decreasing spatial patchiness. If this mechanism does indeed play a significant role, then the distribution of non‐planktonic species should be more aggregated – both temporally and spatially – than the distribution of species with a planktonic larval stage. To test this prediction, we compared 1) both the spatial and the temporal abundance–occupancy relationships and 2) both the spatial and the temporal mean–variance relationships of population size across species of rocky intertidal gastropods with differing dispersive traits from the Pacific coast of Japan. We found that, compared to planktonic species, non‐planktonic species exhibited 1) a smaller occupancy rate for any given level of mean population size and 2) greater variations in population size, both spatially and temporally. This suggests that the macroecological patterns observed in this study (i.e. the abundance–occupancy relationships and mean–variance relationships of population size across species) were shaped by the effect of larval dispersal dampening population fluctuation, which works over both space and time. While it has been widely assumed that larval dispersal enhances population fluctuations, larval dispersal may in fact enhance the connectively of populations and buffer population fluctuations and reduce local extinction risks.  相似文献   

4.
A comparison was made of the evolutionary patterns among larviparous and oviparous species of the family Ostreidae. The data reveal that larviparous species have experienced a wider range of environmental variables, life history traits, and levels of genetic variation than have oviparous species. Non-parametric correlation coefficients were obtained among fifteen variables (i.e., two genetic, four environmental and nine life-history variables). Among the life-history variables, mode of larval development, fecundity, egg size, initial size of the planktonic larva and planktonic larval period were found to covary significantly with the genetic variables. In a comparison of environmental and life-history variables, the mode of larval development and habitat water depth were found to covary. The implications of these results are discussed with reference to the evolution of the family Ostreidae.  相似文献   

5.
SYNOPSIS. The poecilogonous polychaete Streblospio benedicti(Webster) exhibits both planktotrophic and lecithotrophic modesof larval development. The alternative trophic modes are associatedwith differences in age and size at maturation, offspring number,size and energetic investment, larval planktonic period, morphologyand survivorship. This paper reviews a decade of research intothe control and consequences of the traits associated with planktotrophyand lecithotrophy in S. benedicti. The dominant control on reproductiveand developmental characters is genetic. Significant additivegenetic variance has been detected for egg diameter, fecundity,larval planktonic period and aspects of larval morphology. However,environmental factors such as temperature, food quality andphotoperiod, and intrinsic factors such as maternal age, exertconsiderable influence on non-trophic developmental traits (e.g.,offspring number, size and energy content). Demographic consequencesof development mode are reviewed for field and laboratory demesof S. benedicti dominated by individuals exhibiting either planktotrophyor lecithotrophy. Similar population size structure, fluctuationsin abundance, P: B ratios, and estimated population growth ratesare achieved through trade-offs between survivorship and fecundity. Development mode may best be viewed as a complex set of traitsthat are intimately linked developmentally and evolutionarilyto other aspects of an organism's life history. Greater insightinto the control and consequences of development mode shouldresult from further investigation of these linkages  相似文献   

6.
One potential evolutionary response to environmental heterogeneity is the production of randomly variable offspring through developmental instability, a type of bet‐hedging. I used an individual‐based, genetically explicit model to examine the evolution of developmental instability. The model considered both temporal and spatial heterogeneity alone and in combination, the effect of migration pattern (stepping stone vs. island), and life‐history strategy. I confirmed that temporal heterogeneity alone requires a threshold amount of variation to select for a substantial amount of developmental instability. For spatial heterogeneity only, the response to selection on developmental instability depended on the life‐history strategy and the form and pattern of dispersal with the greatest response for island migration when selection occurred before dispersal. Both spatial and temporal variation alone select for similar amounts of instability, but in combination resulted in substantially more instability than either alone. Local adaptation traded off against bet‐hedging, but not in a simple linear fashion. I found higher‐order interactions between life‐history patterns, dispersal rates, dispersal patterns, and environmental heterogeneity that are not explainable by simple intuition. We need additional modeling efforts to understand these interactions and empirical tests that explicitly account for all of these factors.  相似文献   

7.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

8.
What selection pressures drive the evolution of offspring size? Answering this fundamental question for any species requires an understanding of the relationship between offspring size and offspring fitness. A major goal of evolutionary ecologists has been to estimate this critical relationship, but for organisms with complex lifecycles, logistical constraints restrict most studies to early life‐history stages only. Here, we examine the relationship between offspring size and offspring performance in the field across multiple life‐history stages and across generations in a marine invertebrate .We then use these data to parameterise a simple optimality model to generate predictions of optimal offspring size and determined whether these predictions depended on which estimate of offspring performance was used. We found that offspring size had consistently positive effects on performance (estimated as post‐metamorphic growth, fecundity and reproductive output). We also found that manipulating the experience of offspring during the larval phase changed the way in which offspring size affects performance: offspring size affected post‐metamorphic growth when larvae were allowed to settle immediately but offspring size affected survival when larvae were forced to swim prior to settlement. Despite finding consistently positive effects of offspring size, early measures of the effect of offspring size resulted in the systematic underestimation of optimal offspring size. Surprisingly, the amount of variation in offspring performance that offspring size explained decreased with increasing time in the field but the steepness of the relationship between offspring size and performance actually increased. Our results suggest caution should be exercised when empirically examining offspring size effects – it may not be appropriate to assume that early measures are a good reflection of the actual relationship between offspring size and fitness.  相似文献   

9.
Offspring size varies at all levels of organisation, among species, mothers and clutches. This variation is thought to be the result of a tradeoff between offspring quality and quantity, where larger offspring perform better but are more costly to produce. Local environmental conditions alter the benefits of increased offspring size and thereby mediate selection on this trait. For sessile organisms, dispersal is a crucial part of the offspring phase, and in animals, bigger offspring tend to better endure longer dispersal distances than smaller offspring because they have more energy. Theory predicts that increasing distances between suitable habitats strengthens selection for larger offspring. We manipulated the dispersal duration of offspring of different sizes in the bryozoan Watersipora subtorquata and then examined the relationship between offspring size and post‐metamorphic performance in the field. We found that selection on offspring size is altered by larval experience. Larger offspring had higher post‐settlement performance if the larval period was short but, contrary to current theory, performed worse when the larval period was extended. The reversal of the relationship between offspring size and performance by extending the larval phase in Watersipora may be due to the way in which offspring size affects growth in this species. Regardless of the mechanism, it appears that experiences in one life‐history stage alter selection on offspring size in another stage, even when they occupy identical habitats as adults.  相似文献   

10.
Summary Differences in maternal investment and initial offspring size can have important consequences for offspring growth and development. To examine the effects of initial size variability in the frogBombina orientalis, we reared larvae (N=360) in one of two treatments representing different levels of environmental quality. We used snout-vent length at the feeding stage (stage 25, Gosner 1960) as a measure of maternal investment. In a “low quality” treatment, larvae were reared with two conspecific tadpoles and food was limited, whereas in a “high quality” treatment, larvae were reared individually and were fed ad libitum. Among tadpoles reared in the low quality treatment, individuals that were initially small had smaller body sizes through metamorphosis and longer larval periods than individuals that were initially large. Among tadpoles reared in the high quality treatment, initial size had only a weak influence on later larval size, and did not significantly affect metamorphic size of the duration of the larval period. This interaction between maternal investment and rearing conditions suggests that production of initially small offspring could be advantageous if these offspring develop in relatively benign environments, but disadvantageous if environments are more severe. These findings are discussed in light of previous studies that have demonstrated such interactions in organisms with complex life cycles.  相似文献   

11.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

12.
Classical optimality models of offspring size and number assume a monotonically increasing relationship between offspring size and performance. In aquatic organisms with complex life cycles, the size–performance function is particularly hard to grasp because measures of performance are varied and their relationships with size may not be consistent throughout early ontogeny. Here, we examine size effects in premetamorphic (larval) and postmetamorphic (juvenile) stages of brooding marine animals and show that they vary contextually in strength and direction during ontogeny and among species. Larger offspring of the sea anemone Urticina felina generally outperformed small siblings at the larval stage (i.e., greater settlement and survival rates under suboptimal conditions). However, results differed when analyses were conducted at the intrabrood versus across‐brood levels, suggesting that the relationship between larval size and performance is mediated by parentage. At the juvenile stage (15 months), small offspring were less susceptible than large ones to predation by subadult nudibranchs and both sizes performed similarly when facing adult nudibranchs. In a sympatric species with a different life history (Aulactinia stella), all juveniles suffered similar predation rates by subadult nudibranchs, but smaller juveniles performed better (lower mortalities) when facing adult nudibranchs. Size differences in premetamorphic performance of U. felina were linked to total lipid contents of larvae, whereas size‐specific predation of juvenile stages followed the general predictions of the optimal foraging strategy. These findings emphasize the challenge in gathering empirical support for a positive monotonic size–performance function in taxa that exhibit complex life cycles, which are dominant in the sea.  相似文献   

13.
The transition from marine to freshwater habitats is one of the major steps in the evolution of life. In the decapod crustaceans, four groups have colonized fresh water at different geological times since the Triassic, the freshwater shrimps, freshwater crayfish, freshwater crabs and freshwater anomurans. Some families have even colonized terrestrial habitats via the freshwater route or directly via the sea shore. Since none of these taxa has ever reinvaded its environment of origin the Decapoda appear particularly suitable to investigate life‐history adaptations to fresh water. Evolutionary comparison of marine, freshwater and terrestrial decapods suggests that the reduction of egg number, abbreviation of larval development, extension of brood care and lecithotrophy of the first posthatching life stages are key adaptations to fresh water. Marine decapods usually have high numbers of small eggs and develop through a prolonged planktonic larval cycle, whereas the production of small numbers of large eggs, direct development and extended brood care until the juvenile stage is the rule in freshwater crayfish, primary freshwater crabs and aeglid anomurans. The amphidromous freshwater shrimp and freshwater crab species and all terrestrial decapods that invaded land via the sea shore have retained ocean‐type planktonic development. Abbreviation of larval development and extension of brood care are interpreted as adaptations to the particularly strong variations of hydrodynamic parameters, physico‐chemical factors and phytoplankton availability in freshwater habitats. These life‐history changes increase fitness of the offspring and are obviously favoured by natural selection, explaining their multiple origins in fresh water. There is no evidence for their early evolution in the marine ancestors of the extant freshwater groups and a preadaptive role for the conquest of fresh water. The costs of the shift from relative r‐ to K‐strategy in freshwater decapods are traded‐off against fecundity, future reproduction and growth of females and perhaps against size of species but not against longevity of species. Direct development and extension of brood care is associated with the reduction of dispersal and gene flow among populations, which may explain the high degree of speciation and endemism in directly developing freshwater decapods. Direct development and extended brood care also favour the evolution of social systems, which in freshwater decapods range from simple subsocial organization to eusociality. Hermaphroditism and parthenogenesis, which have evolved in some terrestrial crayfish burrowers and invasive open water crayfish, respectively, may enable populations to adapt to restrictive or new environments by spatio‐temporal alteration of their socio‐ecological characteristics. Under conditions of rapid habitat loss, environmental pollution and global warming, the reduced dispersal ability of direct developers may turn into a severe disadvantage, posing a higher threat of extinction to freshwater crayfish, primary freshwater crabs, aeglids and landlocked freshwater shrimps as compared to amphidromous freshwater shrimps and secondary freshwater crabs.  相似文献   

14.
Environments causing variation in age‐specific mortality – ecological agents of selection – mediate the evolution of reproductive life‐history traits. However, the relative magnitude of life‐history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade‐off between these traits using a meta‐analysis in livebearing fishes (Poeciliidae). Life‐history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring‐number and offspring‐size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life‐history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.  相似文献   

15.
Based on the analysis of 12 egg and larval variables and temperature of 65 temperate freshwater fish species, the possible relationships between oocyte diameter, larval size at hatch, time and temperature were reassessed and the main early life‐stage strategies were described and compared. Time and degree‐days required to reach hatching and mixed feeding were weakly related to oocyte diameter and strongly to temperature. These results are chiefly because oocyte diameter and yolk reserves are weakly related and temperature strongly increases tissue differentiation rate, activity of hatching glands and embryo motility. Strong positive relationships were found between larval size and oocyte diameter and degree‐days for incubation. No relationship was found between larval size and degree‐days from hatching to mixed feeding and between degree‐days for incubation and degree‐days from hatching to mixed feeding. These last two results are chiefly because the developmental stages at hatching and at the onset of exogenous feeding are not fixed in ontogeny and are not directly related to either larval size or degree‐days for incubation, but more probably are species specific. Whatever the spawning season, which can occur almost all year long, the different trade‐offs at the early life‐stages ensure that most larvae are first feeding during spring, when food size and abundance are the most appropriate.  相似文献   

16.
Parental care is widespread among vertebrates and the observed patterns of parental care and investment are extremely diverse. Among amphibians, caecilians (Gymnophiona) exhibit considerable variation in reproductive modes, including both oviparity and viviparity, combined with highly unusual investment strategies (e.g. skin‐feeding and intrauterine feeding). In the present study, current knowledge on the reproductive modes is integrated into an analysis of the evolutionary scenario of parental investment of caecilians. Phylogenetically basal caecilians possessing a biphasic life cycle that includes an aquatic larval stage invest in macrolecithal eggs directly corresponding to size at hatching. Some phylogenetically derived caecilians (i.e. the Teresomata) have a smaller clutch size and show a reduction to either medium‐yolked (mesolecithal) or small‐yolked (microlecithal) eggs. Via alternative pathways of parental investment, such as intrauterine feeding in viviparous taxa and maternal dermatotrophy in oviparous taxa, teresomatan caecilians increase both offspring size and quality. However, more data regarding reproductive biology are needed to obtain a fully resolved understanding of the evolution of reproduction in caecilian amphibians.  相似文献   

17.
Decapod Crustaceans Decapod Crustaceans, which are by origin a marine group that still occurs mainly in the sea, invaded during their evolution also firm land and freshwater habitats. Stress factors associated with those non‐marine environments have successfully been countervailed by long‐lived benthic juvenile and adult life‐history stages, which were able to evolve structural and physiological adaptations. By contrast, the adaptability of the short‐lived planktonic larval stages has been much weaker, remaining physiologically fragile and mostly dependant on planktonic food sources. Terrestrial as well as limnic decapods have evolved various ”export strategies" based on extended migrations. These are performed by the adult females and/or the first larval stage, being aimed at an avoidance of stress conditions during the larval phase. In order to successfully complete the larval phase in freshwater, already the earliest developmental stages must express special structures and physiological functions aiding to the maintenance of osmotic homeostasis and to an independance from planktonic food sources.  相似文献   

18.
Nurul Izza Ab Ghani  Juha Merilä 《Oikos》2014,123(12):1489-1498
Compensatory growth (CG) is a form of phenotypic plasticity allowing individuals’ growth trajectories to rebound after a period of resource limitation, but little is known about the reproductive and cross‐generational costs of CG. We studied the potential costs of CG by exposing female nine‐spined sticklebacks Pungitius pungitius to 1) high (favourable), 2) low (stressful), and 3) recovery (initially stressful, subsequently favourable) feeding treatments, and quantified the effects of these treatments on female reproductive traits (clutch, egg and yolk size), and on the size of their offspring. The low feeding treatment reduced female size relative to the high and recovery feeding treatments, which produced equally large females. Hence, females from the recovery treatment demonstrated CG and full growth compensation. Feeding treatments had significant effects on clutch, yolk, egg and larval size, also when the effect of female size was controlled for. However, these effects came about mostly because females from the low feeding treatment produced small clutches with large eggs (containing little yolk) and larvae, whereas females from the recovery feeding treatment produced as large clutches, eggs (with similar amounts of yolk) and larvae as females from the high feeding treatment. Yet, structural equation modelling revealed that while a direct effect of female size on offspring size was positive in the low and high feeding treatments, it was negative in the recovery feeding treatment, independently of egg and clutch size. This indicates a cross‐generational tradeoff between female and offspring sizes in the recovery feeding treatment. Also the tradeoff between clutch and larval size was more pronounced in recovery than in low or high feeding treatments. Hence, apart from demonstrating that environmental influences experienced by females during their development have the potential to influence their size, fecundity and reproductive traits, the results also provide evidence for complex cross‐generational costs of recovery growth.  相似文献   

19.
The effects of environmental variation on bryophytes at a regional scale   总被引:2,自引:0,他引:2  
The distribution of bryophytes in central Belgium was investigated using species grid‐mapping superimposed on a series of maps which included information on soil conditions and land use. Our objectives were to assess the influence of environmental variation on the bryoflora at a regional scale, to examine how bryophytes respond to environmental variation, and to assess the extent to which species ecological and life‐history traits determine the accuracy of the predictability of species occurrence in order to provide comprehensive lists of species based on environmental conditions. The first two axes of a correspondence analysis (CA) of the floristic data explained 14.6% of the total χ2. CA1 was significantly correlated with loamy‐sandy soils on a sand layer (r=?0.74, p<0.001), forest cover (r=?0.80, p<0.001), loamy soils (r=0.79, p<0.001), and agricultural fields cover (r=0.61, p<0.001). CA2 had a low but significant correlation coefficient with pebbly soils cover (r=0.38, p<0.001). The probability of occurrence of 59% of the investigated species could be significantly predicted by logistic regression from the sets of environmental variables. About 55% of the species exhibited an increasing probability of occurrence with increasing forest cover and loamy‐sandy soils cover, 1% with agricultural fields and loamy soils cover, and 3% with pebbly soils cover. The predictability of species occurrence varied as a function of four life‐history traits (minimum spore size, life expectancy, type of gametophyte and papillose leaf cell walls) and three ecological traits (indicator values of light, temperature and soil acidity). The most predictable species, including a number of leafy liverworts, were characteristic for acidic, fresh and shaded conditions and displayed a strong preference for forest habitats. Taxa with limited predictability included epiphytes and mosses characteristic of pebbly soils due to the ability of these species to efficiently disperse and adapt to various ecological conditions. Species for which the distribution range could not successfully be predicted were either ubiquitous, characteristic for ephemeral habitats, or highly successful in a very common habitat.  相似文献   

20.
Abstract A central tenet of life‐history theory is the presence of a trade‐off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade‐off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field‐based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号