共查询到20条相似文献,搜索用时 0 毫秒
1.
D. J. McKenzie† R. Martínez‡ A. Morales‡ J. Acosta‡ R. Morales‡ E. W. Taylor J. F. Steffensen§ M. P. Estrada‡ 《Journal of fish biology》2003,63(2):398-409
Swimming respirometry was employed to compare inactive metabolic rate ( R r ), maximum metabolic rate ( R max ), resultant aerobic scope and maximum sustainable (critical) swimming speed ( U crit ), in growth hormone transgenic (GHT) and wild-type (W) tilapia Oreochromis sp. hybrids. Although the R r of GHT tilapia was significantly (58%) higher than their W conspecifics, there were no significant differences in their net aerobic scope because GHT tilapia exhibited a compensatory increase in R max that was equal to their net increase in R r . As a consequence, the two groups had the same U crit . The GHT and W tilapia also exhibited the same capacity to regulate oxygen uptake during progressive hypoxia, despite the fact that the GHT fish were defending a higher demand for O2 . The results indicate that ectopic expression of GH raises metabolic rate in tilapia, but the fish compensate for this metabolic load and preserve such physiological determinants of fitness as aerobic scope, swimming performance and tolerance of hypoxia. 相似文献
2.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope. 相似文献
3.
The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here, we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e., the capacity for surviving severe hypoxia) may determine present‐day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral‐dwelling gobies, Gobiodon histrio, and G. erythrospilus, with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40′S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). In contrast, the more equatorial species (G. histrio) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32–33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. 相似文献
4.
Shaun S. Killen Julie J. H. Nati Cory D. Suski 《Proceedings. Biological sciences / The Royal Society》2015,282(1813)
The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus, we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations. 相似文献
5.
Emil A. F. Christensen Morten B. S. Svendsen John F. Steffensen 《Journal of fish biology》2020,97(3):794-803
The present study determined the effect of body mass and acclimation temperature (15–28°C) on oxygen consumption rate (ṀO2) and the size dependency of preferred temperature in European perch Perca fluviatilis. Standard metabolic rate (SMR) scaled allometrically with body mass by an exponent of 0.86, and temperature influenced SMR with a Q10 of 1.9 regardless of size. Maximum metabolic rate (MMR) and aerobic scope (MMR-SMR) scaled allometrically with body mass by exponents of 0.75–0.88. The mass scaling exponents of MMR and aerobic scope changed with temperature and were lowest at the highest temperature. Consequently, the optimal temperature for aerobic scope decreased with increasing body mass. Notably, fish <40 g did not show a decrease aerobic scope with increasing temperature. Factorial aerobic scope (MMR × SMR−1) generally decreased with increasing temperatures, was unaffected by size at the lower temperatures, and scaled negatively with body mass at the highest temperature. Similar to the optimal temperature for aerobic scope, preferred temperature declined with increasing body mass, unaffectedly by acclimation temperature. The present study indicates a limitation in the capacity for oxygen uptake in larger fish at high temperatures. A constraint in oxygen uptake at high temperature may restrict the growth of larger fish with environmental warming, at least if food availability is not limited. Furthermore, behavioural thermoregulation may be contributing to regional changes in the size distribution of fish in the wild caused by global warming as larger individuals will prefer colder water at higher latitudes and at larger depths than smaller conspecifics with increasing environmental temperatures. 相似文献
6.
P. D. Line K. Kvernebo J. Helgerud F. Ingjer 《European journal of applied physiology and occupational physiology》1992,64(6):508-512
Aerobic endurance capacity is partly dependent on blood supply to and metabolic capacity of the active muscles. Recordings of lower limb skin postocclusive hyperaemia with laser Doppler flowmetry can differentiate between patients with lower limb atherosclerosis and healthy controls. In this study, we investigated the relationship between aerobic endurance, calf volume, common femoral artery diameter and time properties of the postocclusive laser Doppler curve. A group of 16 healthy male subjects with values for aerobic endurance which varied from those of untrained men to elite endurance trained athletes were examined. Duration of laser Doppler recorded skin postocclusive hyperaemia was significantly correlated to both aerobic power and anaerobic threshold (P less than 0.01). Hyperaemia in subjects with large common femoral artery diameter was of shorter duration (P less than 0.05). The peak and mean body mass related blood flow during hyperaemia was correlated to anaerobic threshold (P less than 0.05). These results were in agreement with previous studies indicating an effect of endurance training on the blood supply to the muscles concerned. 相似文献
7.
吴奇;王洪;王丽英;彭敏锐;郑雪丽;李平;付世建;夏继刚 《水生生物学报》2025,49(7):072504-1-072504-8
为探究秦岭细鳞鲑(Brachymystax tsinlingensis )与其主要猎物鱼拉氏鱥(Phoxinus lagowskii )游泳能力的种间差异及其生理机制, 采用鱼类游泳代谢仪, 分别测定了两种实验鱼野生种群有氧运动能力[步法转换速度Gait transition speed (U gait)和临界游泳速度Critical swimming speed (U crit)]、无氧运动能力[匀加速游泳速度Constant acceleration test speed (U cat)]、静止代谢率(Resting metabolic rate, RMR)、最大代谢率(Maximum metabolic rate, MMR)、有氧代谢空间(Aerobic metabolic scope, MS)、运动耗氧率及单位距离运动能耗(Energetic cost of transport, COT)等。结果表明: (1)秦岭细鳞鲑U crit和U cat高于拉氏鱥(P <0.05), 但二者rU gait、rU crit和rU cat差异不显著(P >0.05); (2)秦岭细鳞鲑RMR、MMR、MS等代谢特征均显著高于拉氏鱥(P <0.05), 并且特定流速下秦岭细鳞鲑运动耗氧率及COT高于拉氏鱥; (3)秦岭细鳞鲑U crit与MS、MMR呈现出显著正相关或正相关的趋势, 拉氏鱥U crit与其MS和MMR均无显著相关性(P >0.05)。研究结果提示, 整体上秦岭细鳞鲑与拉氏鱥的相对游泳能力相近, 但秦岭细鳞鲑的游泳效率更低; 秦岭细鳞鲑的代谢潜能更大, 代谢潜能是维持其运动表现的重要动力。 相似文献
8.
为了揭示不同温度条件下运动和摄食对细鳞鲑幼鱼代谢模式的影响,在饱和溶氧(>8.0 mg·L-1)条件下,分别测定了空腹组和摄食组在5个处理温度(4、8、12、16和20 ℃)下的运动前代谢率(MO2p)、活跃代谢率(MO2a)、代谢范围(MS)、临界游泳速度(UC)以及10个流速水平下的实时游泳代谢率(MR).结果表明: 在各个温度条件下,摄食组的MO2p和MO2a均显著高于空腹组(P<0.05),且分别提高了15%和12%(4 ℃)、47%和23%(8 ℃)、30%和21%(12 ℃)、43%和36%(16 ℃)及8%和7%(20 ℃);摄食组与空腹组的UC和MS均无显著性差异(P>0.05),但随着温度升高,两组的MS均呈现下降趋势;随流速的增加,各组的游泳代谢率呈先升高后降低的变化规律,且摄食组显著大于空腹组(P<0.05),各组的最大代谢率峰值均出现在低于UC的流速条件下;在细鳞鲑幼鱼的游泳速度接近70%UC的运动过程中,其代谢率不断增大至峰值,随后在游泳速度达到UC的过程中,代谢率呈下降趋势.表明在一定温度范围条件下,细鳞鲑幼鱼的最大代谢率是由运动与摄食共同诱导产生的,在达到最大代谢率峰值的过程中代谢表现为添加模式;之后随游泳代谢率的下降,摄食诱导的代谢率被削减,该过程表现为运动优先代谢模式. 相似文献
9.
10.
M. J. HAGUE M. R. FERRARI J. R. MILLER D. A. PATTERSON G. L. RUSSELL A. P. FARRELL S. G. HINCH 《Global Change Biology》2011,17(1):87-98
Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 °C increase in average summer water temperature over 100 years (1981–2000 to 2081–2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 °C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, ≥90% of salmon encountered temperatures exceeding population‐specific thermal optima for maximum aerobic scope; Topt=16.3 °C for Gates Creek and Topt=14.5 °C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations≥50% of Weaver Creek fish exceeded temperature thresholds associated with 0–60% of maximum aerobic scope). Potential for adaptation via directional selection on run‐timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15–31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0–17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population‐specific differences in behaviour and physiological constraints when forecasting impacts of climate change on migratory survival of aquatic species. 相似文献
11.
Station holding in Pterygoplichthys spp. was associated with a lower energy cost relative to similarly sized fishes that swam against the free stream current. Pterygoplichthys spp. was characterized by a low, stable mass-specific metabolic rate ( c. 50 mg O2 kg−1 h−1 ) relative to subcarangiform swimmers that held position in the free stream, until it slipped backwards and burst swam against the current. Furthermore, the maximum range of the rate of oxygen consumption (aerobic scope) of Pterygoplichthys spp. was small relative to many non-benthic fishes. 相似文献
12.
In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg−1 h−1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg−1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies. 相似文献
13.
Physiological responses of the euryhaline red drum, Sciaenops ocellatus, to chloride salt addition, low salinity, and high sulfate concentration were measured. Survival was increased by addition of calcium chloride (CaCl2) or magnesium chloride (MgCl2) to dilute artificial seawater (0.2 ppt salinity). Although survival and routine metabolic rates were greater in MgCl2 treatments, growth and feed efficiency were greater in CaCl2 treatments. Marginal metabolic scope increased when CaCl2 or MgCl2 were added to dilute artificial seawater. There was a strong positive linear relationship (p=0.0001, r=0.91) between fish survival and salinity of artificial seawater dilutions over the salinity range 0.1 to 3.0 ppt. Monovalent ion concentrations in red drum plasma varied; whereas, divalent ion concentrations were relatively constant. Survival and growth were not affected by high sulfate concentrations (2000 mg l-1) in 3.0 ppt artificial seawater supplemented with either sodium sulfate or magnesium sulfate. Routine metabolic rate and marginal metabolic scope of red drum exposed to high sulfate concentrations were slightly, but not significantly, lower than those of red drum in 3 ppt artificial seawater. 相似文献
14.
Andrew Clarke Hans‐Otto Pörtner 《Biological reviews of the Cambridge Philosophical Society》2010,85(4):703-727
Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope‐based techniques for the measurement of metabolic rate in free‐ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature‐dependent, indicating that there would have been significant improvement in whole‐organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long‐held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved. 相似文献
15.
16.
Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no-chase control. We used a repeated-measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no-chase control; (b) a 3-min exhaustive chase; and (c) a 3-min exhaustive chase followed by 1-min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no-chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no-chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it. 相似文献
17.
Adam Habary Jacob L. Johansen Tiffany J. Nay John F. Steffensen Jodie L. Rummer 《Global Change Biology》2017,23(2):566-577
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2–3 °C above long‐term annual means can compromise critical physiological processes. We examined the capacity of a model species – a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end‐of‐century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long‐term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species. 相似文献
18.
19.
本文报道海拔3417m和4280m地区世居藏族和移居汉族青少年运动状态下心肺功能的对比研究。结果显示:3417m和4280m世居藏族的最大氧耗量、无氧阈值及最大心输出量都明显大于汉族,血氧饱和度(Sao2)随运动负荷的增加而降低。海拔3417m藏、汉族的△Sao2分别为7.46%和10.03%,4280m处为8.57%和13.75%,最大心率随海拔升高而下降。研究提示,藏族青少年有较高的最大有氧能力,反映了他们对低氧环境的适应优势。 相似文献
20.
Ocean temperatures are rising and fish are redistributing themselves poleward and into deeper waters to retain a favourable thermal environment (11 and 30). To investigate whether biogeographical shifts might occur through behavioural redistribution into optimal environments, we examined whether a common triplefin species (Forsterygion lapillum) would behaviourally select (i.e. track) a temperature that matches its physiological optimum under laboratory conditions. F. lapillum were acclimated to 15, 18 or 21 °C for at least 4 weeks, after which various rates of oxygen consumption (MO2) were measured using automated respirometry and their behavioural thermal preferenda assessed using an electronic shuttle choice tank. Aerobic metabolic scope (resolved as the difference between maximal and maintenance MO2) did not differ across all thermal treatments (i.e. specimens acclimated to 15, 18 or 21 °C) revealing that F. lapillum is a eurythermal species with a range of optimal physiological performance that closely matches the environmental conditions they are exposed to. A comparably wide range of behavioural preference would perhaps be expected but all three acclimation groups showed a surprisingly narrow behavioural preference range of 20–21 °C. The results therefore suggest that, irrespective of acclimation, eurythermal species may have a tendency to select optimal temperatures at the upper limit of their thermal distribution range. The results are discussed in the context of the ecology and the expected response of F. lapillum to future thermal change. 相似文献