首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The idea of using marine reserves, where all fishing is banned is not new to fisheries management. It was first formally considered by Beverton and Holt but rejected in favour of approaches such as fleet and gear control. Since that analysis, many fisheries have collapsed worldwide, illustrating the vulnerability of fishery resources and the ineffectiveness of these approaches. Empirical data and modelling suggest that marine reserves would generally increase yields, especially at the high fishing mortality that occurs in most fisheries. However, the most interesting feature of reserves is their ability to provide resilience to overexploitation, thereby reducing the risk of stock collapse. Benefits from reserves come from the increase in biomass and individual size within them, resulting in adult migration and/or larval dispersal that would replenish fishing grounds. The use of marine reserves in managing fisheries necessitates a thorough understanding of critical habitat requirements, fish movement, fish behaviour, the relations between subpopulations and the critical density effect for larval dispersal. When properly designed, and coupled with other management practices, reserves may provide a better insurance against uncertainties in stock assessment, fishing control and management by protecting a part of the population from exploitation. This strategy can be used for both sedentary and migratory species.  相似文献   

2.
Using marine reserves to estimate fishing mortality   总被引:1,自引:0,他引:1  
The proportion of a fish stock that is killed by fishing activity is often calculated as the catch divided by the estimated stock biomass. However, stock biomass is notoriously difficult to estimate reliably, and moreover, the catch may be uncertain or misreported and does not include losses due to discarding. In all too many fisheries, these difficulties have lead to underestimates of total fishing mortality and the commercial demise of the fishery. No‐take marine reserves eliminate fishing mortality from within their boundaries and, for species that exhibit seasonal migratory behaviour, comparison of reserves with fished areas can provide direct estimates of the proportion killed by fishing. For an important exploited species in New Zealand, seasonal changes in density of sub‐legal fish at three marine reserves were similar in both reserve and adjacent non‐reserve areas. However, this result did not hold for legal‐size fish, and the difference in seasonal change between reserved and non‐reserved areas was used to obtain direct estimates of the total localized fishing mortality in the non‐reserve area over 6‐month periods. Estimates of the percentage of legal‐size fish killed by fishing ranged from 70 to 96%. These results demonstrate an unanticipated practical benefit from marine reserves that goes beyond their ecological role.  相似文献   

3.
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.  相似文献   

4.
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.  相似文献   

5.
Marine reserves help coastal ecosystems cope with extreme weather   总被引:1,自引:0,他引:1  
Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate‐related disturbance.  相似文献   

6.
Size-structured predator–prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems.  相似文献   

7.
To help manage the fluctuations inherent in fish populations scientists have argued for both an ecosystem approach to management and the greater use of marine reserves. Support for reserves includes empirical evidence that they can raise the spawning biomass and mean size of exploited populations, increase the abundance of species and, relative to reference sites, raise population density, biomass, fish size and diversity. By contrast, fishers often oppose the establishment and expansion of marine reserves and claim that reserves provide few, if any, economic payoffs. Using a stochastic optimal control model with two forms of ecological uncertainty we demonstrate that reserves create a resilience effect that allows for the population to recover faster, and can also raise the harvest immediately following a negative shock. The tradeoff of a larger reserve is a reduced harvest in the absence of a negative shock such that a reserve will never encompass the entire population if the goal is to maximize the economic returns from harvesting, and fishing is profitable. Under a wide range of parameter values with ecological uncertainty, and in the ‘worst case’ scenario for a reserve, we show that a marine reserve can increase the economic payoff to fishers even when the harvested population is not initially overexploited, harvesting is economically optimal and the population is persistent. Moreover, we show that the benefits of a reserve cannot be achieved by existing effort or output controls. Our results demonstrate that, in many cases, there is no tradeoff between the economic payoff of fishers and ecological benefits when a reserve is established at equal to, or less than, its optimum size.  相似文献   

8.
No-take marine reserves (NTMRs) are much advocated as a solution to managing marine ecosystems, protecting exploited species and restoring natural states of biodiversity [1,2]. Increasingly, it is becoming clear that effective marine conservation and management at ecosystem and regional scales requires extensive networks of NTMRs [1,2]. The world's largest network of such reserves was established on Australia's Great Barrier Reef (GBR) in 2004. Closing such a large area to all fishing has been socially and politically controversial, making it imperative that the effectiveness of this new reserve network be assessed. Here we report evidence, first, that the densities of the major target species of the GBR reef line fisheries were significantly higher in the new NTMRs, compared with fished sites, in just two years; and second, that the positive differences were consistent for multiple marine reserves over an unprecedented spatial scale (>1,000 km).  相似文献   

9.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area’s unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize connectivity on an ecological time scale, reserves should be spaced less than 50–200 km apart depending on the planktonic larval duration of target species; and reserves should be located upstream of fishing sites, taking the reproductive timing of focal species in consideration. Reserves should be established for the long term, preferably permanently, since full recovery of all fisheries species is likely to take?>?25 years. Reserve size should be based on movement patterns of focal species, although marine reserves?>?10 km long are likely to protect?~?80% of fish species. Since climate change will affect species’ geographic range, larval duration, growth, reproduction, abundance, and distribution of key recruitment habitats, these guidelines may require further modifications to maintain ecosystem function in the future.  相似文献   

10.
There are numerous examples of no-take marine reserves effectively conserving fish stocks within their boundaries. However, no-take reserves can be rendered ineffective and turned into ‘paper parks’ through poor compliance and weak enforcement of reserve regulations. Long-term monitoring is thus essential to assess the effectiveness of marine reserves in meeting conservation and management objectives. This study documents the present state of the 15-year old no-take zone (NTZ) of South El Ghargana within the Nabq Managed Resource Protected Area, South Sinai, Egyptian Red Sea. Previous studies credited willing compliance by the local fishing community for the increased abundances of targeted fish within the designated NTZ boundaries compared to adjacent fished or take-zones. We compared benthic habitat and fish abundance within the NTZ and the adjacent take sites open to fishing, but found no significant effect of the reserve. Instead, the strongest evidence was for a simple negative relationship between fishing pressure and distance from the closest fishing village. The abundance of targeted piscivorous fish increased significantly with increasing distance from the village, while herbivorous fish showed the opposite trend. This gradient was supported by a corresponding negative correlation between the amount of discarded fishing gear observed on the reef and increasing distance from the village. Discarded fishing gear within the NTZ suggested decreased compliance with the no-take regulations. Our findings indicate that due to non-compliance the no-take reserve is no longer functioning effectively, despite its apparent initial successes and instead a gradient of fishing pressure exists with distance from the nearest fishing community.  相似文献   

11.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.  相似文献   

12.
Crow White  Bruce E. Kendall 《Oikos》2007,116(12):2039-2043
Lively debate continues over whether marine reserves can lead to increased fishery yields when compared to conventional, quota‐based management, apparently driven by differences in the complexity and biological richness of the models being used. In an influential article, Hastings and Botsford used an analytically tractable, spatially implicit, non‐age‐structured model to assert that reserves are typically incapable of increasing yields relative to conventional management, regardless of the type (pre‐ or post‐dispersal, involving adults and/or larvae) or functional form (Ricker or Beverton‐Holt) of density dependence present. A recent numerical (simulation) model by Gaylord et al. concludes that reserves can enhance yield compared to conventional management, a result the authors attribute to their spatially‐explicit evaluation of stage‐structured adult growth, survivability and fecundity; and intercohort (adult‐on‐larvae) post‐dispersal density dependent population dynamics. Here we demonstrate that the increased model complexity is not responsible for the different conclusions. We analyze a spatially‐implicit model without stage structure that incorporates intercohort post‐dispersal density dependence. In this simple model we still find annual extirpation of adult populations outside reserves due to fishing to enhance larval recruitment there, allowing for increased yields compared to those achieved when harvest is evenly spread across the entire domain under conventional management. Consideration of neither spatially‐explicit dispersal dynamics nor stage‐structure in adult demographics is required for reserves to substantially improve yield beyond that attainable under conventional management. In contrast, consideration of within cohort post‐dispersal density dependence among larva during settlement in an otherwise identical model generates equivalence in yield between the two management strategies. These results recast a common message characterizing the relative benefit of reserve versus non‐reserve management from “equivalence at best” to “potentially improved”.  相似文献   

13.
Ecosystem engineers that create habitats facilitate the coexistence of many interacting species. This biotic response to habitat engineering may result in non‐intuitive cascading interactions, potentially including feedbacks to the engineer. Such feedback mechanisms, either positive or negative, may be especially important for the maintenance of biogenic habitats and their community‐wide facilitation. Here, we describe the complex interactions and feedbacks that link marine habitat‐forming engineers, the reef‐building corals, and a group of herbivores, the parrotfishes; the latter preventing the overgrowth of macroalgae, a major competitor of corals. Using density data of eight parrotfish species on a Caribbean reef, we first describe the form of the response of parrotfish abundance to increasing topographic complexity generated by coral growth. Topographic complexity enhanced parrotfish abundance by promoting habitat suitability, but the shape (linear vs asymptotic) and strength of this response varied across species and size. Parrotfish grazing intensity, estimated from data on abundance and species‐, size‐ and life phase‐specific grazing rates also increased with topographic complexity despite an increase in the surface area over which parrotfish graze. Depending on fish species, this functional response was found to be linear or asymptotic. Using a simple analytical model we then explored the effects of topographic complexity and fishing pressure on coral‐algal competition, with particular emphasis on the implications of non‐linearities in the intensity of grazing. Simulations demonstrate that fishing and habitat degradation impair the performance of grazing, but that an asymptotic response of grazing intensity to topographic complexity increases the ecological resilience of coral reefs. Parrotfish and corals are mutually beneficial by creating a loop of positive, indirect feedbacks that maintain their own structure and function: coral growth promotes habitat suitability for parrotfish, concordantly enhancing grazing intensity, which in turn facilitates coral growth by reducing competitive exclusion by macroalgae. We conclude that the resilience of biogenic habitats is enhanced by non‐linear biotic responses to engineering and by the emergence of reciprocal facilitation linking habitat engineering and response organisms.  相似文献   

14.
Community-based management and the establishment of marine reserves have been advocated worldwide as means to overcome overexploitation of fisheries. Yet, researchers and managers are divided regarding the effectiveness of these measures. The “tragedy of the commons” model is often accepted as a universal paradigm, which assumes that unless managed by the State or privatized, common-pool resources are inevitably overexploited due to conflicts between the self-interest of individuals and the goals of a group as a whole. Under this paradigm, the emergence and maintenance of effective community-based efforts that include cooperative risky decisions as the establishment of marine reserves could not occur. In this paper, we question these assumptions and show that outcomes of commons dilemmas can be complex and scale-dependent. We studied the evolution and effectiveness of a community-based management effort to establish, monitor, and enforce a marine reserve network in the Gulf of California, Mexico. Our findings build on social and ecological research before (1997–2001), during (2002) and after (2003–2004) the establishment of marine reserves, which included participant observation in >100 fishing trips and meetings, interviews, as well as fishery dependent and independent monitoring. We found that locally crafted and enforced harvesting rules led to a rapid increase in resource abundance. Nevertheless, news about this increase spread quickly at a regional scale, resulting in poaching from outsiders and a subsequent rapid cascading effect on fishing resources and locally-designed rule compliance. We show that cooperation for management of common-pool fisheries, in which marine reserves form a core component of the system, can emerge, evolve rapidly, and be effective at a local scale even in recently organized fisheries. Stakeholder participation in monitoring, where there is a rapid feedback of the systems response, can play a key role in reinforcing cooperation. However, without cross-scale linkages with higher levels of governance, increase of local fishery stocks may attract outsiders who, if not restricted, will overharvest and threaten local governance. Fishers and fishing communities require incentives to maintain their management efforts. Rewarding local effective management with formal cross-scale governance recognition and support can generate these incentives.  相似文献   

15.
As the science of connectivity evolves, so too must the management of coral reefs. It is now clear that the spatial scale of disturbances to coral reef ecosystems is larger and the scale of larval connectivity is smaller than previously thought. This poses a challenge to the current focus of coral reef management, which often centers on the establishment of no-take reserves (NTRs) that in practice are often too small, scattered, or have low stakeholder compliance. Fished species are generally larger and more abundant in protected reserves, where their reproductive potential is often greater, yet documented demographic benefits of these reproductive gains outside reserves are modest at best. Small reproductive populations and limited dispersal of larvae play a role, as does the diminished receptivity to settling larvae of degraded habitats that can limit recruitment by more than 50%. For “demographic connectivity” to contribute to the resilience of coral reefs, it must function beyond the box of no-take reserves. Specifically, it must improve nursery habitats on or near reefs and enhance the reproductive output of ecologically important species throughout coral reef ecosystems. Special protection of ecologically important species (e.g., some herbivores in the Caribbean) and size-regulated fisheries that capitalize on the benefits of NTRs and maintain critical ecological functions are examples of measures that coalesce marine reserve effects and improve the resilience of coral reef ecosystems. Important too is the necessity of local involvement in the management process so that social costs and benefits are properly assessed, compliance increased and success stories accrued.  相似文献   

16.
 This study examined the effect of fishing on the density, biomass, species richness and overall structure of the reef fish community at two islands (Sumilon and Apo) in the Philippines from 1983 to 1993. A series of natural fishing experiments over this period involving marine reserves were monitored at each island, where estimates of fishing intensity and selectivity were available. Fishing intensity (15% and 25% of biomass removed per year at Sumilon and Apo, respectively) was high enough to affect total community biomass, but not density, significantly. Species richness was not affected significantly by fishing, except at Sumilon reserve. The fishery was relatively non-selective with most families/trophic groups caught roughly in proportion to their contribution to community biomass. Thus fishing did not alter the relative abundance of the major families/trophic groups significantly, except during a period of use of explosives and drive nets in the Sumilon reserve. At the level of family/trophic group the community displayed strong resilience of structure. There was little evidence of secondary effects e.g. declines in abundance of large predators resulting in measurable increases in abundance of their prey. This resilience of the community to the effects of fishing most likely results from three important community attributes (open nature of the component populations, likely maintenance of upstream recruitment supply and apparent lack of any obvious “keystone” species or families) and one important characteristic of the fishery (relatively non-selective with respect to the components of the community). Accepted: 30 June 1998  相似文献   

17.
Understanding how plant community dynamics are impacted by altered disturbance regimes is a pressing challenge for restoration ecology. Most assessments of community dynamics involve computationally intensive statistical techniques, while management often defers to derived, qualitative “state‐and‐transition” models. Here, we demonstrate an intermediate approach to track and predict community resilience, diversifying the tools available to assess ecosystem change. First, we develop indices of sagebrush‐steppe community structure in permanent monitoring plots based on plant functional types and our conceptual understanding of the ecosystem. The indices define a bivariate space within which the trajectories of permanent monitoring plots can be tracked. Second, we quantify two metrics of community resilience: resistance (overall change during the time period) and stability (average amount of movement per monitoring period). Plots dominated by obligate seeder shrubs displayed low resilience relative to those dominated by grasses and forbs or resprouting shrubs. Resilience was strongly related to initial plant functional type composition and elevation. Our results suggest restoration objectives should consider how plant traits control ecosystem responses to disturbance. We suggest that the approach developed here can help assess longer‐term resilience, evaluate restoration success, and identify communities at risk of state transitions.  相似文献   

18.
Cumulative pressures from global climate and ocean change combined with multiple regional and local‐scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio‐economic settings, we present an Adaptive Resilience‐Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press‐type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse‐type (acute) stressors (e.g. storms, bleaching events, crown‐of‐thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo‐Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on‐the‐ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.  相似文献   

19.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

20.
Coral reef islands are among the most vulnerable environments on Earth to climate change because they are low lying and largely constructed from unconsolidated sediments that can be readily reworked by waves and currents. These sediments derive entirely from surrounding coral reef and reef flat environments and are thus highly sensitive to ecological transitions that may modify reef community composition and productivity. How such modifications – driven by anthropogenic disturbances and on‐going and projected climatic and environmental change – will impact reef island sediment supply and geomorphic stability remains a critical but poorly resolved question. Here, we review the unique ecological–geomorphological linkages that underpin this question and, using different scenarios of environmental change for which reef sediment production responses can be projected, explore the likely resilience of different island types. In general, sand‐dominated islands are likely to be less resilient than those dominated by rubble grade material. However, because different islands typically have different dominant sediment constituents (usually either coral, benthic foraminifera or Halimeda) and because these respond differently to individual ecological disturbances, island resilience is likely to be highly variable. Islands composed of coral sands are likely to undergo major morphological change under most near‐future ecological change scenarios, while those dominated by Halimeda may be more resilient. Islands composed predominantly of benthic foraminifera (a common state through the Pacific region) are likely to exhibit varying degrees of resilience depending upon the precise combination of ecological disturbances faced. The study demonstrates the critical need for further research bridging the ecological–geomorphological divide to understand: (1) sediment production responses to different ecological and environmental change scenarios; and (2) dependant landform vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号