首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

2.
Recent global commitments have placed forest and landscape restoration at the forefront of countries' efforts to recover ecosystem services, conserve biodiversity, and mitigate the effects of climate change. However, it needs to be asked if current native tree seedling supply meets an increase in demand for forest restoration? This study assessed the current configuration, distribution, and production capacity of forest nurseries producing native trees in Brazil. Brazil provides an interesting example of how global agreements aligned with national policies can lead to the proliferation of native seedling nurseries, and the challenges faced to restore species‐rich native forest ecosystems. We found that the nurseries in the Atlantic Forest region can still meet an increase in demand—both in terms of seedling quantity and diversity—because most of their production capacity is not currently used. However, not all Brazilian biomes have sufficient nurseries to meet restoration demands, thus there is a risk of using native species from a few biogeographical regions in a much spatially wider and ecologically diverse area. In addition, lack of seed supply and qualified labor can hamper the growth of the market. Barriers to seed supply may also lead to low levels of genetic variability and floristic representation in the populations and ecosystems to be restored. We conclude that restoration of high‐diversity forest ecosystems requires policies and supportive programs, with emphasis on private nurseries, to guarantee adequate supply of native tree seedlings and provide the necessary incentives to develop the emergent economy of forest restoration.  相似文献   

3.
With the need to meet ambitious restoration targets, an improved native seed sector for the production of herbaceous species with a practical and supportive policy framework is recognized. We evaluated the current “ready‐made” policy frameworks in Europe regarding the native seed supply of herbaceous species and found them to be, generally, unsatisfactory for both producers and users. Initially, such policies were designed for fodder seed and relate to distinctness, uniformity, and stability, traits that do not reflect the genetic heterogeneity of native species required for ecological restoration. Until recently, more suitable certification standards were designed to multiply fodder seed for preservation of the natural environment; however, due to the disparateness of the seed market in Europe, this policy is rarely practical and fails to encompass all herbaceous native species often resulting in unregulated seed sales. We recommend a new or adapted native seed policy constructed through a participatory or bottom‐up approach and supported through the formation of widely based trade associations. Such a policy could stimulate the native seed trade with concomitant impacts on the speed of improving ecosystem services.  相似文献   

4.
African Olive (Olea europaea ssp. cuspidata) is a densely crowned evergreen small tree, native to eastern Africa that is highly invasive in areas where it has been introduced, including Hawaii and Australia. Invasion by African Olive threatens Cumberland Plain Woodland, a critically endangered grassy eucalypt woodland from western Sydney, Australia, through the formation of a dense mid‐canopy excluding the regeneration of native species. We established a 3‐year field experiment to determine the effectiveness of direct seeding and fire, as techniques for early stage restoration of a 2 ha historically cleared and degraded Cumberland Plain Woodland site after the removal of African Olive. Direct seeding was able to re‐establish a native perennial grass cover which was resistant to subsequent weed invasion and could be managed as an important first stage in woodland restoration with fire and selective herbicide. Fire was able to stimulate some germination of colonising native species from the soil seed bank after 15 years of African Olive invasion; however, germination and establishment of native shrubs from the applied seed mix was poor. We propose a ‘bottom‐up’ model of ecological restoration in such highly degraded sites that uses a combination of direct seeding and stimulation of the soil seed bank by fire, which could be applicable to other degraded grassy woodland sites and plant communities.  相似文献   

5.
The National Seed Strategy for Rehabilitation and Restoration was developed by a partnership of 12 federal agencies and over 300 non‐federal cooperators in the United States and launched in 2015. Implementation aims to ensure the availability of genetically appropriate native seed for ecological restoration across the country. Ecological restoration is required in response to a wide range of human impacts. The four main goals of the strategy are: identification of seed needs and availability of genetically appropriate seed; research to improve seed production and ecosystem restoration; development of decision support tools for ecological restoration; and communication and outreach. With the increasing occurrence and intensity of extreme weather events including drought and related wild fires, hurricanes and flooding, native seed is increasingly required in large quantities to build ecological resilience. Acceptance of this need will be crucial to implementation of the National Seed Strategy.  相似文献   

6.
We argue that the need for a quality seed supply chain is a major bottleneck for the restoration of Chile's native ecosystems, thus supplementing the list of bottlenecks proposed by Bannister et al. in 2018. Specifically, there is a need for defining seed transfer zones, developing standards and capacities for properly collecting and storing seeds, reducing information gaps on seed physiology and longevity, and implementing an efficient seed supply chain with certification of seed origin and quality. Without such capacities, countries are unlikely to meet their restoration commitments. Although we focus on bottlenecks in Chile, the issues we raise are relevant to other countries and thus the global agenda for ecological restoration.  相似文献   

7.
Nonnative conifers are widespread in the southern hemisphere, where their use as plantation species has led to adverse ecosystem impacts sometimes intensified by invasion. Mechanical removal is a common strategy used to reduce or eliminate the negative impacts of nonnative conifers, and encourage native regeneration. However, a variety of factors may preclude active ecological restoration following removal. As a result, passive restoration – unassisted natural vegetation regeneration – is common following conifer removal. We asked, ‘what is the response of understorey cover to removal of nonnative conifer stands followed by passive restoration?' We sampled understorey cover in three site types: two‐ to ten‐year‐old clearcuts, native forest and current plantations. We then grouped understorey species by origin (native/nonnative) and growth form, and compared proportion and per cent cover of these groups as well as of bare ground and litter between the three site types. For clearcuts, we also analysed the effect of time since clearcut on the studied variables. We found that clearcuts had a significantly higher average proportion of nonnative understorey vegetation cover than native forest sites, where nonnative vegetation was nearly absent. The understorey of clearcut sites also averaged more overall vegetation cover and more nonnative vegetation cover (in particular nonnative shrubs and herbaceous species) than either plantation or native forest sites. Notably, 99% of nonnative shrub cover in clearcuts was the invasive nonnative species Scotch broom (Cytisus scoparius). After ten years of passive recovery since clearcutting, the proportion of understorey vegetation cover that is native has not increased and remains far below the proportion observed in native forest sites. Reduced natural regeneration capacity of the native ecosystem, presence of invasive species in the surrounding landscape and land‐use legacies from plantation forestry may inhibit native vegetation recovery and benefit opportunistic invasives, limiting the effectiveness of passive restoration in this context. Abstract in Spanish is available with online material.  相似文献   

8.
Large‐scale ecological restoration programs across the world involve a voluminous demand for native seeds of diverse native plant species. In this article, we explore how institutional systems have operated and impacted native seed supply in Brazil. Native seed supply for restoration is essentially a community‐based activity which faces broad barriers to operating within regulations because of requirements for excessive and costly technical documentation, scarcity of seed laboratories, and lack of instructions for native seed quality testing. Although decentralized seed networks have stimulated arrangements for local organizations to promote seed supply, policies constrain the development of local capacities and the ongoing sustainability of these organizations. These conditions have resulted in a vast network of informal collectors and producers who are largely “invisible” and unknown to the regulatory authorities. Policies have decentralized responsibilities from the state without devolving decision‐making power to the multiple stakeholders engaged in policy elaboration. The policies maintain the centralized regulation of native seed supply. After examining Brazilian seed networks' experiences and conducting discussions with stakeholders and experts, we suggest adapting the current regulations to more local level contexts, encompassing the following strategies: (1) ensuring native seed origin and identity; (2) relaxation of the laboratory accreditation process for native seed quality assurance; (3) fostering seed markets for restoration; (4) research to provide technological innovation; (5) supporting local, diverse, and small seed‐based businesses.  相似文献   

9.
The growing demand for native seeds in ecological restoration and rehabilitation, whether for mining, forest, or ecosystem restoration, has resulted in a major global industry in the sourcing, supply, and sale of native seeds. However, there are no international guidance documents for ensuring that native seeds have the same standards of quality assurance that are regular practice in the crop and horticultural industries. Using the International Principles and Standards for the Practice of Ecological Restoration as a foundation document, we provide for the first time a synthesis of general practices in the native seed supply chain to derive the Principles and Standards for Native Seeds in Ecological Restoration (“Standards”). These practices and the underpinning science provide the basis for developing quality measures and guidance statements that are adaptable at the local, biome, or national scale. Importantly, these Standards define what is considered native seed in ecological restoration and highlight the differences between native seeds versus seeds of improved genetics. Seed testing approaches are provided within a logical framework that outline the many different dormancy states in native seed that can confound restoration outcomes. A “pro‐forma” template for a production label is included as a practical tool that can be customized for local needs and to standardize reporting to end‐users on the level of seed quality and germinability to be expected in a native seed batch. These Standards are not intended to be mandatory; however, the guidance statements provide the foundation upon which regulatory approaches can be developed by constituencies and jurisdictions.  相似文献   

10.
The use of native grasses for both restoration and commercial purposes is becoming increasingly important globally. Many native grasses have limited success in seed‐based restoration (e.g. post‐mine rehabilitation) and commercial industries (e.g. agriculture) due to poor seed germination and handling. Seed‐enhancement technologies can assist in overcoming these barriers. This study aimed to use combinations of seed enhancements to overcome the germination and handling challenges in two dominant Australian native grass species with demand in restoration and commercial industries (Triodia wiseana C.A Gardner and Rytidosperma caespitosum [Gaudich.] Connor & Edgar). Selected enhancements included hydropriming (including inoculation with karrikinolide [KAR1]), flash flaming, and seed coating. Combinations of these seed enhancements allowed improvements in both germination (by up to 55% and 18% for T. wiseana and R. caespitosum, respectively) and floret geometry (flowability, as measured through a mechanized seeder, improved by up to 6‐fold and 17‐fold for T. wiseana and R. caespitosum, respectively), with the order of enhancement application being important. The responses of each species to enhancements corresponded with key biological processes and ecological cues required for recruitment events in nature, such as fire and rainfall events. Triodia wiseana germination was driven by fire‐related cues (i.e. KAR1, flaming), while R. caespitosum germination was highest in response to moisture‐related cues (i.e. hydro‐priming). Responses to seed enhancements (and combinations of) may have implications for the management and scaled use of the targeted species. This can assist in improving the restoration and commercial success of the study species, and potentially other grasses with germination and handling challenges, into the future.  相似文献   

11.
The soil seed bank can be an important source for vegetation regeneration, and data on the similarity between aboveground vegetation and the seed bank can provide information about successional pathways after disturbances or land-use change. We conducted this study in natural grasslands in the subtropical highland region in southern Brazil. We evaluated the effect of silviculture on richness, density, and composition of the seed bank at former grassland sites converted to pine plantations 25 years ago. We worked at six grassland sites and three pine plantation sites and used the seedling emergence method. Seed bank density and richness in grasslands were lower than those reported in similar environments in other regions. Species richness and density varied considerably within each vegetation type; therefore, richness and density were not statistically significant, while composition varied among vegetation types. In terms of species, the pine plantation seed bank was a small subset of the grassland seed bank. Seeds of typical grassland species were missing in the pine plantation, but also had only low abundances in the grassland, and similarity of seed bank and vegetation were low (less than 20%). The low seed density found in this study, including in grasslands areas, indicates that regeneration of species from the soil seed bank likely is of a limited role for the maintenance of plant populations after disturbances in this system. Our data further suggest that natural regeneration after tree planting in grasslands is reduced due to seed limitation.  相似文献   

12.
The global push to achieve ecosystem restoration targets has resulted in an increased demand for native seeds that current production systems are not able to fulfill. In many countries, seeds used in ecological restoration are often sourced from natural populations. Though providing seed that is reflective of the genetic diversity of a species, wild harvesting often cannot meet the demands for large‐scale restoration and may also result in depletion of native seed resources through over harvesting. To improve seed production and decrease seed costs, seed production systems have been established in several countries to generate native seeds based on agricultural or horticultural production methods or by managing natural populations. However, there is a need to expand these production systems which have a primary focus on herbaceous species to also include slower maturing shrub and tree seed. Here we propose that to reduce the threat of overharvest on the viability of natural populations, seed collection from natural populations should be replaced or supplemented by seed production systems. This overview of seed production systems demonstrates how to maximize production and minimize unintended selection bias so that native seed batches maintain genetic diversity and adaptability to underpin the success of ecological restoration programs.  相似文献   

13.
We quantified net changes to the area and quality of native vegetation after the introduction of biodiversity offsetting in New South Wales, Australia—a policy intended to “prevent broad‐scale clearing of native vegetation unless it improves or maintains environmental values.” Over 10 years, a total of 21,928 ha of native vegetation was approved for clearing under this policy and 83,459 ha was established as biodiversity offsets. We estimated that no net loss in the area of native vegetation under this policy will not occur for 146 years. This is because 82% of the total area offset was obtained by averting losses to existing native vegetation and the rate that these averted losses accrue was over‐estimated in the policy. There were predicted net gains in 10 of the 14 attributes used to assess the quality of habitat. An overall net gain in the quality of habitat was assessed under this policy by substituting habitat attributes that are difficult to restore (e.g. mature trees) with habitat attributes for which restoration is relatively easy (e.g. tree seedlings). Long‐term rates of annual deforestation did not significantly change across the study area after biodiversity offsetting was introduced. Overall, the policy examined here provides no net loss of biodiversity: (i) many generations into the future, which is not consistent with intergenerational equity; and (ii) by substituting different habitat attributes, so gains are not equivalent to losses. We recommend a number of changes to biodiversity offsetting policy to overcome these issues.  相似文献   

14.
Restoration practitioners must increasingly incorporate seed procurement models and seed use planning early in project development, despite insufficient guidance about what are reasonable expectations for the sourcing and use of native seeds. This special issue presents a series of articles examining each key step in the native seed supply chain, and provides a framework for the “standards” that need to be applied to native seed batches if the native seed supply chain is to achieve the levels of reliability and transparency required. These Standards provide seed buyers, end users, and funding bodies with a level of confidence and reliability in the sourcing of quality native seeds, and a pathway toward global best practice in native seed use.  相似文献   

15.
Many renaturation projects and compensation areas are based on the use of seeds from regional indigenous wild plants; in the following: native or regional seeds. Despite this, such seeds make up only a small proportion of the total number of seeds used for greening projects; in Germany, for example, it is only around 1% (=200 t per year). Although the market for regional seeds is small, it is highly competitive. High‐priced native seeds compete with flower mixes of unspecified origin and can only be differentiated from them by reliable quality seals. A quality assurance system based on seed legislation (EU Directive 2010/60, preservation mixtures) has been developed in a few European countries. However, quality assurance ends with the sale of the seeds. Thus, seed use remains unmonitored, and often unsuitable material, or material foreign to the region, is planted in restoration areas. Unfortunately, nature conservation has not made seed‐based restoration one of its key issues, neither at the European nor at the national level. Currently there are many different local and regional standards, methods and private certificates that are confusing for users and which provide little continuity and predictability for producers. We recommend the establishment of an EU directive or a broadly agreed recommendation to the EU member states, spearheaded by nature conservation, which would define the standards for producing and using native seeds (e.g. harmonised regions that cross national borders, quality regulations). At the same time, wild plant interest groups should combine existing structures in order to strengthen seed‐based restoration through international cooperation.  相似文献   

16.
Clearing native vegetation to increase the amount of land available for agriculture in northeastern Mexico has left remnants ranging in size from fragments of continuous vegetation to isolated individual trees. These provide valuable opportunities for restoring larger areas of native vegetation. We explored whether fragmentation of Tamaulipan thornscrub affects the removal of seeds from 12 woody species that encompass a range of sizes and dispersal mechanisms. We tested whether (1) seed removal rates under isolated trees were higher than under continuous vegetation; (2) dispersal structures, such as fleshy pericarps, made some seeds more attractive to seed removers; and (3) microenvironmental variation affected seed removal rates. Seeds were placed under canopies of Texas ebony (Ebenopsis ebano) and Mesquite trees (Prosopis laevigata). Seed removal trials were conducted three times, each trial lasting 30 days. Most seeds were removed in all trials by the end of one month. Seed removal rate was slower under isolated trees. In general, fleshy fruits were removed faster than other fruits; whole fruits and fleshy tissue were removed faster than depulped seeds. In species with fleshy pericarps, acid washing of seeds, to simulate seeds processed in the digestive tract of dispersers, reduced the seed removal rates, suggesting that it would be a good pre‐treatment for restoration efforts.  相似文献   

17.
Abstract To protect native biodiversity from environmental weeds, the impacts that these weeds cause need to be known before weed control commences. Asparagus asparagoides (L.) Druce (bridal creeper) (Asparagaceae) is a serious environmental weed and has been selected for biological control in Australia. To predict the responses of plant communities to the control of bridal creeper, a prerelease baseline of the impacts of bridal creeper on native plant communities was undertaken. Plant assemblages in areas invaded by bridal creeper were compared with reference areas that contained little or no bridal creeper. Areas invaded by bridal creeper contained 52% fewer native plant species when compared with nearby reference areas. However, there was no difference in the number of other exotic plant species between areas. Similar trends were found for the germinable seed bank. Although a greater number of exotic species were present in the seed bank compared with the vegetation surveys, there was still no difference between areas with and without bridal creeper. In a glasshouse trial, exotic species germinated more frequently compared with native species. This could indicate that as bridal creeper density decreases following control, exotic species have an advantage over native species when colonizing areas left vacant by bridal creeper. Second, as bridal creeper areas contained reduced native species richness and cover, they may be susceptible to further weed invasion after bridal creeper is removed. Therefore, simply reducing the presence of bridal creeper may not guarantee successful restoration of invaded areas and additional restoration efforts will be needed to ensure the ultimate goal of protecting native biodiversity is reached.  相似文献   

18.
Seed supply often limits the size and scope of restoration projects that require active revegetation. To meet demand from more and larger tallgrass prairie restoration projects in the Great Plains, U.S.A., seed is wild‐harvested—collected from remnant habitats—using agricultural combine harvesters. We investigated the potential impacts of wild‐harvest by comparing prairie remnants of northwestern Minnesota that varied in their histories of harvest frequency but were otherwise similar. We asked: (1) Do wild‐harvested prairies differ in species composition from unharvested prairies? (2) If so, can life history traits be used to predict the response of prairie communities to wild‐harvest? We conducted a retrospective study of 17 prairies harvested for seed frequently (annually/biennially), infrequently (2–3 times), or not at all. We sampled vegetation at 45 points within each site, recording all species present within 0.25 m2 quadrats. To address the first question, we used non‐metric multidimensional scaling and Mantel tests, followed by analysis of variance contrasts to identify any species less likely to occur on frequently harvested sites (“harvest‐negative”). For the second question, we used logistic regression to test whether lifespan, clonality, and seed production predicted harvest‐negative species. Plant community composition in frequently harvested prairies differed from that of infrequently or unharvested prairies. Fourteen species, generally short‐lived and non‐clonal, were classified as harvest‐negative. Our results suggest that frequent wild‐harvest disrupts reproduction of species relying on seed, and that life history traits may provide a basis for predicting a species' response to wild‐harvest.  相似文献   

19.
通过幼苗萌发法和样方调查相结合的方法对三江平原不同演替恢复阶段的种子库特征及其与植被的关系进行了研究。将开垦湿地、不同演替恢复阶段湿地以及天然湿地不同土壤层次(0-5、5-10 cm和根茎)的种子库在两种水分条件下(湿润、淹水10 cm)进行萌发处理。结果表明: 随着演替恢复阶段的进行, 种子库的结构和规模逐渐扩大, 地表群落表现出由旱生物种占优势的群落逐渐演变成以小叶章(Calamagrostis angustifolia)占优势的湿生群落的演替趋势。恢复7年湿地、恢复14年湿地、天然湿地土壤种子库萌发物种数分别为24种、29种、39种, 植被物种数为21种、25种、14种。湿地类型、水分条件和土壤层次均显著影响种子库萌发的物种数及幼苗数(p < 0.01)。种子库具有明显的分层现象, 天然湿地0-5 cm土层种子库种子萌发密度是5-10 cm土层的4倍左右, 而恢复湿地仅1.3倍左右, 且土层间萌发物种相似性系数较低。湿润条件下的萌发物种数显著高于淹水条件, 且两种水分条件下萌发物种的生活型不同。由于恢复时间较短, 不同演替恢复阶段的种子库与植被相似性维持在30%以下。湿地中根茎分蘖出大量的湿地物种, 对于小叶章等优势物种的繁殖具有重要作用。研究表明, 在开垦湿地退耕后的次生演替阶段, 种子库能够保持大量的湿地物种, 通过对湿地种子库与植被的关系研究, 能够为三江平原湿地群落演替与湿地恢复提供策略指导。  相似文献   

20.
The density of seeds in soil seed banks and the species composition of both seed banks and aboveground vegetation were examined in naturally restored sites (NRS) and aerially seeded sites (ASS) in the Hunshandak sandlands of northern China. Five sites were naturally restored 1, 2, 4, 8, and 15 years ago and four sites were aerially seeded 1, 2, 5, and 7 years ago. In total, 36 species were recorded in the seed bank and 41 species in the aboveground vegetation for all NRS, whereas the numbers were 17 and 19, respectively, for ASS, indicating that the NRS can support higher diversity of species than the ASS. During the initial 2 years of restoration, introduced alien shrubs by aerial seeding dominated the vegetation of ASS, although there were indigenous pioneer species in the seed bank which failed to establish in the community. In contrast, indigenous species were dominant components in both the seed bank and the vegetation at the NRS. These findings suggest that the establishment of introduced species might have restricted the germination of certain indigenous pioneer species. Seed bank density of NRS significantly increased with time from 459 ± 76 seeds m−2 at NRS2 to 3,351 ± 694 seeds m−2 at NRS15, showing that the seed bank in degraded grassland is large enough to allow natural restoration. It is not always necessary to actively introduce seeds to enhance vegetation diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号