首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascano M  Robinson PR 《Biochemistry》2006,45(7):2398-2407
Deactivation of the vertebrate photopigment rhodopsin is achieved through a two-step process. Rhodopsin is first phosphorylated by rhodopsin kinase and subsequently deactivated by the binding of the regulatory protein arrestin or its splice variant, p44. Although much is known about the overall differences between arrestin and p44 binding to different rhodopsin species (photolyzed versus unphotolyzed and/or phosphorylated versus unphosphorylated), the exact role of p44 during phototransduction remains to be fully elucidated. Our current study addresses this question by identifying structural differences between arrestin and p44 and characterizing the interaction between the negatively charged rhodopsin tail and either p44 or arrestin. Our results demonstrate that arrestin and p44 bind differently to different phosphorylated rhodopsin species and that this may be due to a structural difference between p44's and arrestin's basal states. This difference offers a potential regulatory mechanism that could regulate p44 and arrestin binding and, as a result, regulate the kinetics of the rod's light response.  相似文献   

2.
Phototransduction results from a cascade of reactions that culminate in a neuronal signal. Photoisomerization of rhodopsin's chromophore, 11-cis-retinal to all-trans-retinal, leads to the formation of the activated photoproduct metarhodopsin II (Meta II). Subsequently, Meta II initiates the excitation events by activating many copies of the rod cell-specific G-proteins (Gt or transducin). To terminate the signal, the long-lived Meta II must be quenched. Deactivation of Meta II involves phosphorylation by rhodopsin kinase followed by the binding of arrestin. In order to recycle rhodopsin for phototransduction, arrestin must dissociate, and the chromophore must be replaced. In this study, we show that the reduction of the photolyzed chromophore all-trans-retinal to all-trans-retinol is essential for recycling photoactivated rhodopsin. Once this reduction has occurred, the arrestin blockade of the receptor is removed, the chromophore site becomes accessible for regeneration, and the phosphates can be hydrolyzed. If the reduction does not occur, we demonstrate that free all-trans-retinal can react with the apoprotein to form pseudo-photoproducts that are spectrally identical to the photoinduced metarhodopsin species (Meta I/II/III). The Meta II-like product, M380, interacts tightly with arrestin and kinase, however, it does not measurably interact with Gt. The persistent blockade by arrestin and the low affinity for Gt together prevent activation of the visual cascade. Therefore, any insufficiency in the reduction of all-trans-retinal to all-trans-retinol may lead to the accumulation of M380-arrestin in situ, which may effect adaptational processes.  相似文献   

3.
Photoactivated rhodopsin is quenched upon its phosphorylation in the reaction catalyzed by rhodopsin kinase and the subsequent binding of a regulatory protein, arrestin. We have found that heparin and other polyanions compete with photoactivated, phosphorylated rhodopsin to bind arrestin (48-kDa protein, S-antigen). This is shown (a) by the suppression of stabilized metarhodopsin II; (b) by changes in the digestion of arrestin in the presence of heparin; and (c) by the restoration of arrestin-quenched phosphodiesterase activity. When bound to arrestin, heparin also mimics phosphorylated rhodopsin by similarly exposing arrestin to limited proteolysis. We conclude that heparin and rhodopsin have similar means of binding to arrestin, and we propose a cationic region of arrestin (beginning with Lys163 of the bovine sequence) as the interaction site. In agreement with previous kinetic data we interpret the results in terms of a binding conformation of arrestin which is stabilized by rhodopsin or heparin and is open to proteolytic attack.  相似文献   

4.
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion.  相似文献   

5.
Gibson SK  Parkes JH  Liebman PA 《Biochemistry》2000,39(19):5738-5749
Reduced effector activity and binding of arrestin are widely accepted consequences of GPCR phosphorylation. However, the effect of receptor multiphosphorylation on G protein activation and arrestin binding parameters has not previously been quantitatively examined. We have found receptor phosphorylation to alter both G protein and arrestin binding constants for light-activated rhodopsin in proportion to phosphorylation stoichiometry. Rod disk membranes containing different average receptor phosphorylation stoichiometries were combined with G protein or arrestin, and titrated with a series of brief light flashes. Binding of G(t) or arrestin to activated rhodopsin augmented the 390 nm MII optical absorption signal by stabilizing MII as MII.G or MII.Arr. The concentration of active arrestin or G(t) and the binding constant of each to MII were determined using a nonlinear least-squares (Simplex) reaction model analysis of the titration data. The binding affinity of phosphorylated MII for G(t) decreased while that for arrestin increased with each added phosphate. G(t) binds more tightly to MII at phosphorylation levels less than or equal to two phosphates per rhodopsin; at higher phosphorylation levels, arrestin binding is favored. However, arrestin was found to bind much more slowly than G(t) at all phosphorylation levels, perhaps allowing time for phosphorylation to gradually reduce receptor-G protein interaction before arrestin capping of rhodopsin. Sensitivity of the binding constants to ionic strength suggests that a strong membrane electrostatic component is involved in both the reduction of G(t) binding and the increase of arrestin binding with increasing rhodopsin phosphorylation.  相似文献   

6.
Arrestin (also named 48-kDa protein or S-antigen) binds to photoexcited and phosphorylated rhodopsin and thereby prevents activation of cGMP phosphodiesterase (EC 3.1.4.35) by transducin in retinal rods. We report here that retinal arrestin consists of several subspecies (isoelectric points between pH 5.5-6.2), which can be separated by FPLC anion-exchange chromatography and by FPLC chromatofocusing resulting in highly enriched individual subspecies. The entire heterogeneity pattern of arrestin is present in rod outer segments, independently of whether arrestin orginated from the outer or mostly from the inner segment of rod cells. The different subspecies show a similar binding behavior to photoexcited rhodopsin phosphorylated to various degrees and they quench the cGMP phosphodiesterase activity equally well. In the presence of rod outer segment membranes, arrestin is phosphorylated light-dependently by protein kinase C (0.2 mol phosphate/mol arrestin). This implies that the heterogeneity of arrestin is not primarily due to phosphorylation. Arrestin from different individuals exists as four isoelectric focusing patterns which occur with remarkably different frequencies in calf and cattle. The complexity of the IEF pattern does not increase with aging. Distinct subspecies of arrestin may reflect differences in their primary structure, or may result from differentially regulated post-translational modifications in individuals.  相似文献   

7.
The structural and functional properties of arrestin were studied by subjecting the protein to limited proteolysis. Limited proteolysis by trypsin cleaves arrestin (48 kDa), producing 20-25-kDa fragments. Prior to this stage of proteolysis, trypsin produced 46.6-, 45.4-, and 42-kDa fragments. Structural analysis of the proteolytic fragments demonstrated major cleavage at the carboxyl terminus, indicating that the carboxyl terminus is highly exposed. We found that forms of arrestin truncated at their carboxyl terminus maintained their functional properties and bound to phosphorylated rhodopsin. Native arrestin binds only to photoexcited phosphorylated rhodopsin, whereas the truncated arrestin binds to phosphorylated rhodopsin independent of its exposure to light. The truncated forms of arrestin were separated from native arrestin by a chromatographic procedure and subsequently characterized in functional studies. The binding of the truncated forms of arrestin to phosphorylated photoexcited rhodopsin is more tight than the binding of native arrestin as determined by a direct binding assay and the phosphodiesterase assay. We suggest that the acidic carboxyl-terminal region of arrestin may act as a regulator for light-dependent binding to phosphorylated rhodopsin.  相似文献   

8.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca2+ titration in the presence of the indicator arsenazo III and 45Ca2+ autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca2+ binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca2+ binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yield dissociation constants for the Ca2+ binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca2+ binding site per arrestin. No Ca2+ binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca2+ buffer.  相似文献   

10.
Proper function of visual arrestin is indispensable for rapid signal shut-off in rod photoreceptors. Dramatic light-dependent changes in its subcellular localization are believed to play an important role in light adaptation of photoreceptor cells. Here we show that visual arrestin binds microtubules. The truncated splice variant of visual arrestin, p44, demonstrates dramatically higher affinity for microtubules than the full-length protein (p48). Enhanced microtubule binding of p44 underlies its earlier reported preferential localization to detergent-resistant membranes, where it is anchored via membrane-associated microtubules in a rhodopsin-independent fashion. Experiments with purified proteins demonstrate that arrestin interaction with microtubules is direct and does not require any additional protein partners. Most importantly, arrestin interactions with microtubules and light-activated phosphorylated rhodopsin are mutually exclusive, suggesting that microtubule interaction may play a role in keeping p44 arrestin away from rhodopsin in dark-adapted photoreceptors.  相似文献   

11.
Regulation of rhodopsin dephosphorylation by arrestin   总被引:9,自引:0,他引:9  
We have characterized the opsin phosphatase activities in extracts of rod outer segments and determined their relationship to known protein phosphatases. The opsin phosphatase activity in the extracts was not due to protein phosphatases 1, 2B, or 2C because it was neither stimulated by Mg2+ or Ca2+/calmodulin nor inhibited by protein phosphatase inhibitors-1 or -2. Opsin phosphatase activity in rod outer segment extracts was potently inhibited by okadaic acid (IC50 approximately 10 nM), a preferential inhibitor of protein phosphatase 2A. Moreover, during chromatography on DEAE-Sepharose, the opsin phosphatase activity co-eluted with three peaks of protein phosphatase 2A activity, termed protein phosphatases 2A0, 2A1, and 2A2. The opsin phosphatase activity of each peak was stimulated by polylysine, a known activator of protein phosphatase 2A. Finally, treatment of rod outer segment extracts with 80% ethanol at room temperature converted the activity from a high molecular weight form characteristic of the protein phosphatase 2A0, 2A1, and 2A2 species to a low molecular weight form characteristic of the protein phosphatase 2A catalytic subunit. We conclude that protein phosphatase 2A is likely to be the physiologically relevant rhodopsin phosphatase. The 48-kDa rod outer segment protein arrestin (S-antigen) was found to inhibit the dephosphorylation of freshly photolyzed rhodopsin by protein phosphatase 2A but did not inhibit the dephosphorylation of unbleached rhodopsin. Arrestin has no effect on the dephosphorylation of phorphorylase a, indicating that the effect was substrate-directed. It appears that dephosphorylation of the photoreceptor protein phosphorhodopsin occurs only after decay of the photoactivated protein and that this may be regulated in vivo by arrestin. The binding of arrestin to photolyzed phosphorylated rhodopsin, i.e. the binding of a regulatory protein to a protein phosphatase substrate to form a complex resistant to dephosphorylation represents a novel mechanism for the regulation of protein phosphatase 2A.  相似文献   

12.
Invertebrate visual signal transduction involves photoisomerization of rhodopsin, activating a guanine nucleotide binding protein (G protein) of the G(q) class, iG(q), which stimulates a phospholipase C, increasing intracellular Ca2+. Arrestin binding to photoactivated rhodopsin is a key mechanism of desensitization. We have previously reported the cloning of a retina-specific arrestin cDNA from Loligo pealei displaying 56-64% sequence similarity to other reported arrestin sequences. Here, we report the purification of the 55-kDa squid visual arrestin. Purified squid visual arrestin is able to inhibit light-activated GTPase activity dose-dependently in arrestin-depleted rhabdomeric membranes and associate with the membrane in a light-dependent manner. Membrane association can be partially inhibited by inositol 1,2,3,4,5,6-hexakisphosphate (IP6), a soluble analog of the membrane lipid phosphatidylinositol 3,4,5-triphosphate. In reconstitution assays, we demonstrate arrestin phosphorylation by squid rhodopsin kinase, a novel function among the G protein-coupled receptor kinase family. Phosphorylation of purified arrestin requires squid rhodopsin kinase, membranes, light-activation, and the presence of Ca2+. This is the first large-scale purification of an invertebrate arrestin and biochemical demonstration of arrestin function in the invertebrate visual system.  相似文献   

13.
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V–VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the ‘constitutive activity’ found in arrestin variants.  相似文献   

14.
Arrestin binding to rhodopsin is one of the major mechanisms of termination of photoresponses in both vertebrates and invertebrates. Here we report the cDNA cloning and characterization of a 48-kDa visual arrestin from squid (Loligo pealei). The cDNA encoded a protein that had 56-64% amino acid sequence similarity to reported arrestin sequences. This protein does not encode any distinct modular domains but contains five fingerprint regions that have been identified within arrestins. Antibodies raised to the recombinant arrestin protein detected arrestin expression only in the eye and recognized a doublet in photoreceptor membranes, representing unphosphorylated and phosphorylated arrestin. In squid eye membranes, arrestin was phosphorylated in a Ca2+-dependent manner and this phosphorylation was inhibited by antibodies raised against squid rhodopsin kinase, but not by inhibitors of protein kinase C or calmodulin kinase. Addition of purified squid rhodopsin kinase to washed rhabdomeric membranes resulted in phosphorylation of rhodopsin, and arrestin was also phosphorylated when calcium was present. This is the first report of a rhodopsin kinase phosphorylating an arrestin substrate, and suggests a dual role for this kinase in the inactivation of the squid visual system.  相似文献   

15.
Sites of arrestin action during the quench phenomenon in retinal rods   总被引:3,自引:0,他引:3  
The target proteins for arrestin (48 kDa protein) action during the quench of cGMP phosphodiesterase (PDE) activation in retinal rod disk membranes were identified by the use of a cross-linking reagent. A heterobifunctional, cleavable, photo-activatable cross-linker (sulfo-SADP) was coupled to purified arrestin. Under precise weak visible light bleach and nucleotide conditions of quench, the cross-linker was UV flash-activated at a time when quench was well established. The target proteins covalently linked to arrestin by cross-linker activation were identified by immunoblotting. In the presence of ATP arrestin cross-linked to both PDE and rhodopsin during the quench phenomenon. Removal of ATP from the reaction mixture essentially abolished the cross-link with PDE, just as ATP omission abolishes quench, but significantly increased the cross-link to rhodopsin. The absence of a cross-link to the plentiful beta-subunit of transductin, as well as the results of competition studies employing arrestin without attached cross-linker, suggest that the observed cross-links are specific and reflect true binding interactions of arrestin during quench. The data are consistent with a model of quench in which photolyzed rhodopsin (R*) catalyzes the formation of an activated form of arrestin, which dissociates from R* in the presence of ATP, and binds to PDEs, thereby deactivating them.  相似文献   

16.
N Bennett  A Sitaramayya 《Biochemistry》1988,27(5):1710-1715
The inactivation of excited rhodopsin in the presence of ATP, rhodopsin kinase, and/or arrestin has been studied from its effect on the two subsequent steps in the light-induced enzymatic cascade: metarhodopsin II catalyzed activation of G-protein and G-protein-dependent activation of cGMP phosphodiesterase. The inactivation of G-protein (from light-scattering measurements) and that of phosphodiesterase (from measurements of cGMP hydrolysis) have been studied and compared in reconstituted systems containing various combinations of the proteins involved (rhodopsin, G-protein, phosphodiesterase, kinase, and arrestin). Our results show that rhodopsin kinase alone can terminate the activation of G-protein and that arrestin speeds up the process at a relative concentration similar to that reported in the rod (half-maximal effect at 50 nM for 4.4 microM rhodopsin). Measurements of rhodopsin phosphorylation under identical conditions show that in the presence of arrestin total metarhodopsin II inactivation is achieved when only 0.5-1.4 phosphates are bound per bleached rhodopsin, whereas in the absence of arrestin it requires binding of 12-16 phosphates per bleached rhodopsin. Phosphodiesterase activity can similarly be turned off by kinase, and the process is similarly accelerated by arrestin.  相似文献   

17.
The deactivation of the bovine G-protein-coupled receptor, rhodopsin, is a two-step process consisting of the phosphorylation of specific serine and threonine residues in the cytoplasmic tail of rhodopsin by rhodopsin kinase. Subsequent binding of the regulatory protein arrestin follows this phosphorylation. Previous results find that at least three phosphorylatable sites on the rhodopsin tail (T340) and at least two of the S338, S334, or S343 sites are needed for complete arrestin-mediated deactivation. Thus, to elucidate the details of the interaction between rhodopsin with arrestin, we have employed both a computational and an in vitro experimental approach. In this work, we first simulated the interaction of the carboxy tail of rhodopsin with arrestin using a Monte Carlo simulated annealing method. Since at this time phosphorylation of specific serines and threonines is not possible in our simulations, we substitute either aspartic or glutamic acid residues for the negatively charged phosphorylated residues required for binding. A total of 17 simulations were performed and analysis of this shows specific charge-charge interactions of the carboxy tail of rhodopsin with arrestin. We then confirmed these computational results with assays of comparable constructed rhodopsin mutations using our in vitro assay. This dual computational/experimental approach indicates that sites S334, S338, and T340 in rhodopsin and K14 and K15 on arrestin are indeed important in the interaction of rhodopsin with arrestin, with a possible weaker S343 (rhodopsin)/K15 (arrestin) interaction.  相似文献   

18.
Identification of regions of arrestin that bind to rhodopsin   总被引:6,自引:0,他引:6  
Arrestin facilitates phototransduction inactivation through binding to photoactivated and phosphorylated rhodopsin (RP). However, the specific portions of arrestin that bind to RP are not known. In this study, two different approaches were used to determine the regions of arrestin that bind to rhodopsin: panning of phage-displayed arrestin fragments against RP and cGMP phosphodiesterase (PDE) activity inhibition using synthetic arrestin peptides spanning the entire arrestin protein. Phage display indicated the predominant region of binding was contained within amino acids 90-140. A portion of this region (residues 95-140) expressed as a fusion protein with glutathione S-transferase is capable of binding to rhodopsin regardless of the activation or phosphorylation state of the receptor. Within this region, the synthetic peptide of residues 109-130 was shown to completely inhibit the binding of arrestin to rhodopsin with an IC50 of 1.1 mM. The relatively high IC50 of this competition suggests that this portion of the molecule may be only one of several regions of binding between arrestin and RP. A survey of synthetic arrestin peptides in the PDE assay indicated that the two most effective inhibitors of PDE activity were peptides of residues 111-130 and 101-120. These results indicate that at least one of the principal regions of binding between arrestin and RP is contained within the region of residues 109-130.  相似文献   

19.
Brannock MT  Weng K  Robinson PR 《Biochemistry》1999,38(12):3770-3777
Many recent reports have demonstrated that rhodopsin's carboxyl-terminal serine residues are the main targets for phosphorylation by rhodopsin kinase. Phosphorylation at the serines would therefore be expected to promote high-affinity arrestin binding. We have examined the roles of the carboxyl serine and threonine residues during arrestin-mediated deactivation of rhodopsin using an in vitro transducin activation assay. Mutations were introduced into a synthetic bovine rhodopsin gene and expressed in COS-7 cells. Individual serine and threonine residues were substituted with neutral amino acids. The ability of the mutants to act as substrates for rhodopsin kinase was analyzed. The effect of arrestin on the activities of the phosphorylated mutant rhodopsins was measured in a GTPgammaS binding assay involving purified bovine arrestin, rhodopsin kinase, and transducin. A rhodopsin mutant lacking the carboxyl serine and threonine residues was not phosphorylated by rhodopsin kinase, demonstrating that phosphorylation is restricted to the seven putative phosphorylation sites. A rhodopsin mutant possessing a single phosphorylatable serine at 338 demonstrated no phosphorylation-dependent quench by arrestin. These results suggest that singly phosphorylated rhodopsin is deactivated through a mechanism that does not involve arrestin. Analysis of additional mutants revealed that the presence of threonine in the carboxyl tail of rhodopsin provides for greater arrestin-mediated quench than does serine. These results suggest that phosphorylation site selection could serve as a mechanism to modulate the ability of arrestin to quench rhodopsin.  相似文献   

20.
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号