首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microfluorimetric procedure, using Calcofluor White, has been developed for the measurement of cellulose biosynthesis by cultured protoplasts of tobacco ( Nicotiana tabacum L. cv. Xanthi nc). The procedure was compared to a conventional method for cellulose estimation, that employing the anthrone reagent following exhaustive extraction of the developing cell walls. The results indicate that the amount of fluorescence emitted following Calcofluor White treatment is a specific measurement of cell wall cellulose levels. The procedure possesses the twin advantages of ease of manipulation and of greatly enhanced sensitivity (in the picogram range) as compared to other methods.  相似文献   

2.
The synthesis and assembly of xyloglucan were examined during early stages of wall regeneration by protoplasts isolated from growing regions of etiolated peas. During early stages of cultivation, fluorescence microscopy showed that the protoplast surface bound Calcofluor and ammonium salt of 8-anilino-1-naphthalene sulfonic acid and, in time, it also bound fluorescent fucose-binding lectin. Based on chemical analysis, 1,3-β-glucan was the main polysaccharide formed by protoplasts and xyloglucan and cellulose were minor wall components. Binding between cellulose and xyloglucan was not as strong as that in tissues of intact pea plants, i.e. mild alkali could dissolve most xyloglucan from the protoplast. However, the addition of exogenous pea xyloglucan into the culture medium stimulated the deposition of new polysaccharides into the protoplast wall and enhanced the close association of newly formed xyloglucan with cellulose.  相似文献   

3.
Summary Protoplasts were isolated from palisade tissue of tobacco leaves by treatment with pectinase and cellulase under aseptic conditions, and were cultured in a synthetic liquid medium. Calcofluor, a fluorescent brightener, was found to be an excellent stain for plant cell walls and was used to demonstrate regeneration of cell walls in these protoplasts. The cultured protoplasts regenerated cell walls by the 3rd day of culture, giving rise to spherical cells. The majority of the protoplasts regenerating cell walls underwent mitosis and cell division. The cycle of mitosis and cell division was repeated 2–3 times during 2 weeks of culture. Some of the nutritional conditions affecting division in the cultured protoplasts were studied.  相似文献   

4.
Apple (Malus sp.) slices gradually lost the ability to synthesize ethylene when incubated with a mixture of enzymes that digest cell walls. The released protoplasts did not produce ethylene. The release of protoplasts was faster from climacteric fruit slices than from preclimacteric tissue. In protoplast suspension culture, as new cell wall was deposited (as judged by the intensity of fluorescence of regenerating protoplasts stained with Calcofluor White and the incorporation of labeled myo-inositol into their ethanol-insoluble residue), ethylene synthesis was gradually regained. Restored ethylene synthesis reached a maximum after 80 hours in protoplasts from preclimacteric fruit and in 120 hours in those from climacteric tissue. Addition of methionine (1 mm) to the culture medium was essential for appreciable synthesis of ethylene; and this synthesis was inhibited by the aminoethoxy analogue of rhizobitoxine and by propyl gallate, inhibitors of ethylene synthesis in higher plants. We suggest that the ethylene-synthesizing enzyme system is highly structured in the apple cell and is localized in a cell wall-cell membrane complex.  相似文献   

5.
Summary Calcofluor White ST is a fluorescent brightener that has previously been shown to alter cellulose ribbon assembly in the bacteriumAcetobacter xylinum. In this report, we demonstrate that Calcofluor also disrupts cell wall assembly in the eukaryotic algaOocystis apiculata. When observed with polarization microscopy, walls altered by Calcofluor show reduced birefringence relative to controls. Electron microscopy has shown that these altered walls contain regions which consist primarily of amorphous material and which generally lack organized microfibrils. We propose that wall alteration occurs because Calcofluor binds with the glucan chains polymerized by the cellulose synthesizing enzymes as they are produced. As a consequence, the glucan chains are prevented from co-crystallizing to form microfibrils. Synthesis of normal walls resumes when Calcofluor is removed, which is consistent with our proposal that Calcofluor acts by direct physical interaction with newly synthesized wall components.Several types of fluorescent patterns at the cell wall/plasmalemma interface have also been observed following Calcofluor treatment. Fluorescent spots, striations; helical bands, and lens-shaped thickenings have been documented. Each of these patterns may be the result of the interaction of Calcofluor with cellulose at different spatial or temporal levels or from varying concentrations of the brightener itself. Helical bands and lens-shaped thickenings also have been examined with the electron microscope. Like other regions of wall alteration, they are found to contain primarily amorphous material. Finally, we note that cells with severely disrupted walls are unable to complete their normal life cycle.  相似文献   

6.
It is known that protoplasts derived from either leaves or suspension cultures of a citrus genotype vary greatly in their regeneration capacities; however, the underlying physiological mechanisms are not well known. In this study, oxidative stress and antioxidant systems during in vitro culture of callus-derived protoplasts and leaf mesophyll-derived protoplasts of Ponkan (Citrus reticulata Blanco) were analyzed to gain insights into observed physiological differences. Morphological observations using light microscopy and scanning microscopy have shown that new cell wall materials appeared within 2–3 days, and the integrate cell walls were regenerated approximately after 6 days of culture of the callus protoplasts, whereas no cell wall formation was observed in the mesophyll protoplasts after culture. During the culture, higher levels of H2O2 and malondialdehyde were detected in the mesophyll protoplasts as compared with the callus ones. On the contrary, the callus protoplasts possessed higher activities of antioxidant enzymes (SOD, POD and CAT) and larger amount of glutathione and ascorbic acid (at one time point) than the mesophyll protoplasts during the culture process. The current data indicate that the mesophyll and callus protoplasts displayed remarkable difference in the degree of oxidative stress and the antioxidant systems, suggesting that high levels of antioxidant activities might play an important role in the regeneration of protoplasts.  相似文献   

7.
Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon) and desorption (koff) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.  相似文献   

8.
Dinoflagellates within the genus Symbiodinium are photosymbionts of many tropical reef invertebrates, including corals, making them central to the health of coral reefs. Symbiodinium have therefore gained significant research attention, though studies have been constrained by technical limitations. In particular, the generation of viable cells with their cell walls removed (termed protoplasts) has enabled a wide range of experimental techniques for bacteria, fungi, plants, and algae such as ultrastructure studies, virus infection studies, patch clamping, genetic transformation, and protoplast fusion. However, previous studies have struggled to remove the cell walls from armored dinoflagellates, potentially due to the internal placement of their cell walls. Here, we produce the first Symbiodinium protoplasts from three genetically and physiologically distinct strains via incubation with cellulase and osmotic agents. Digestion of the cell walls was verified by a lack of Calcofluor White fluorescence signal and by cell swelling in hypotonic culture medium. Fused protoplasts were also observed, motivating future investigation into intra‐ and inter‐specific somatic hybridization of Symbiodinium. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Generation of Symbiodinium protoplasts opens exciting, new avenues for researching these crucial symbiotic dinoflagellates, including genetic modification.  相似文献   

9.
Protoplasts of the filamentous green alga Mougeotia sp. are spherical when isolated and revert to their normal cylindrical cell shape during regeneration of a cell wall. Sections of protoplasts show that cortical microtubules are present at all times but examination of osmotically ruptured protoplasts by negative staining shows that the microtubules are initially free and become progressively cross-bridged to the plasma membrane during the first 3 h of protoplast culture. Cell-wall microfibrils areoobserved within 60 min when protoplasts are returned to growth medium; deposition of microfibrils that is predominantly transverse to the future axis of elongation is detectable after about 6 h of culture. When regenerating protoplasts are treated with either colchicine or isopropyl-N-phenyl carbamate, drugs which interfere with microtubule polymerization, they remain spherical and develop cell walls in which the microfibrils are randomly oriented.  相似文献   

10.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

11.
Methods were developed for the isolation of large numbers of healthy protoplasts from two species of the agarophyte Gracilaria; G. tikvahiae McLachlan and G. lemaneiformis (Bory) Weber-van Bosse. This is the first report of protoplast isolation and cell division in a commercially important, phycocolloid-producing red seaweed, as well as for a member of the Florideophycidae. The optimal enzyme composition for cell wall digestion and protoplast viability consisted of 3% Onozuka R-10, 3% Macerozyme R-10, 1% agarase and 0.5% Pectolyase Y- 23 dissolved in a 60% seawater osmoticum containing 1.0 M mannitol. The complete removal of the cell wall was confirmed by several different methods, including electron microscopic examination, and the absence of Calcofluor White (for cellulose) and TBO (for sulfated polysaccharide) staining. Spontaneous protoplast fusion was observed on several occasions. Protoplast viability was dependent upon the strain and age of the parent material, as well as the mannitol concentration of the enzyme osmoticum. Cell wall regeneration generally occurred in 2-6 days; cell division in 5-10 days. Protoplast-produced cell masses up to the 16-32 cell stage have been grown in culture. However, efforts to regenerate whole plants have been unsuccessful to date.  相似文献   

12.
Microfibril deposition on cultured protoplasts ofVicia hajastana   总被引:1,自引:0,他引:1  
Summary Cell wall regeneration by protoplasts fromVicia hajastana suspension cultures was investigated with Calcofluor White ST staining and platinum-palladium surface replicas. Microfibril deposition was initiated after 10–20 minutes of culture and within 20 hours protoplasts were covered with a heavy mat of microfibrils. The early stages of microfibril formation could not be detected with Calcofluor staining.Supported by the National Research Council of Canada, Grant A6304.Supported by Deutsche Forschungsgemeinschaft.  相似文献   

13.
During the process of degradation of the cell wall of the yeast form of Pullularia pullulans by the lytic system of micromonospora chalcea samples were withdrawn at different times and observed under phase contrast and electron microscope. The progressive lysis of the walls reveals a fibrillar component inside the apparently amorphous wall. Freeze etched preparations of cells during the formation and regeneration of protoplasts show that the cellular membrane is split and this method allows the smooth external face of the membrane and other internal face covered by particles to be seen. The fact that the smooth face of the membrane is only visible during the preparation or the regeneration of protoplasts and very rarely when intact cells are fractured, suggests a strong adherence between cell wall and this external layer of the membrane. During the regeneration which takes place as in most of the yeasts and moulds, a special study of the extension of the cell wall is made and a possible mechanism for this extension of the regenerated cell wall is proposed.  相似文献   

14.
Light, fluorescence and electron microscopy were used to analyse the structural properties of protoplasts obtained from established suspension culture of Solanum lycopersicoides Dun, composed of meristematic cell aggregates. Four types of protoplasts were distinguished immediately after isolation: (1) mononuclear; (2) polynuclear, (3) anuclear and (4) homogeneous protoplasts. Only mononuclear protoplasts were capable of complete cell wall regeneration and mitotic division. Other types of protoplasts were eliminated during culture. Three phases were distinguished in the developing protoplast culture: (1) the elimination phase during which protoplasts damaged during isolation underwent complete degradation; (2) a phase of intense division during which both mitotic cell division and amitotic nuclear division took place; and (3) a stabilization phase leading to the formation of suspension culture. The cell suspension culture obtained from protoplasts was capable of regenerating diploid plants.  相似文献   

15.
Structural analysis of the cell walls regenerated by carrot protoplasts   总被引:1,自引:0,他引:1  
A procedure was developed to isolate protoplasts rapidly from carrot (Daucus carota L. cv. Danvers) cells in liquid culture. High purity of cell-wall-degrading enzymes and ease of isolation each contributed to maintenance of viability and initiation of regeneration of the cell wall by a great majority of the protoplasts. We used this system to re-evaluate the chemical structure and physical properties of the incipient cell wall. Contrary to other reports, callose, a (1 3)-d-glucan whose synthesis is associated with wounding, was not a component of the incipient wall of carrot protoplasts. Intentional wounding by rapid shaking or treatment with dimethyl sulfoxide initiated synthesis of callose, detected both by Aniline blue and Cellufluor fluorescence of dying cells and by an increase in (1 3)-linked glucan quantified in methylation analyses. Linkage analyses by gas-liquid chromatography of partially methylated alditol-acetate derivatives of polysaccharides of the incipient wall of protoplasts and various fractions of the cell walls of parent cells showed that protoplasts quickly initiated synthesis of the same pectic and hemicellulosic polymers as normal cells, but acid-resistant cellulose was formed slowly. Complete formation of the wall required 3 d in culture, and at least 5 d were required before the wall could withstand turgor. Pectic substances synthesized by protoplasts were less anionic than those of parent cells, and became more highly charged during wall regeneration. We propose that de-esterification of the carboxyl groups of pectin uronic-acid units permits formation of a gel that envelops the protoplast, and the rigid cellulose-hemicellulose frame-work forms along with this gel matrix.Abbreviations DEAE Diethylaminoethyl - DMSO dimethyl sulfoxide - ECP extracellular polymers - EDTA ethylenediaminetetraacetic acid - HGA nomogalacturonan - RG rhamnogalacturonan - Tes N-tris(hydroxymethyl)methyl-2-amino-ethanesufonic acid - TFA trifluoroacetic acid Journal paper No. 11,776 of the Purdue University Agriculture Experiment Station  相似文献   

16.
Protoplasts of Marchantia polymorpha L. (liverwort) regenerated new cell walls in initial culture. However, the survival rate of regenerated cells decreased rapidly after this stage. The decrease in survival rate was suppressed by the β-glucosyl Yariv reagent (βglcY), which binds to arabinogalactan proteins (AGPs), only when it was added to culture medium during the period of incipient cell wall regeneration. The addition of βglcY after the period of incipient cell wall regeneration had no effect on the survival rate. These results suggested the involvement of AGPs in the cell wall regeneration process. After cell wall regeneration, the regenerated cells started to divide actively after being transferred to a medium with 1% activated charcoal (AC). Protoplasts that had been cultured with βglcY during the period of incipient cell wall regeneration and then transferred to the AC medium divided vigorously, and the cell division rate was remarkably increased (>80%). However, without transfer to the AC medium, βglcY at concentrations higher than 20 μg ml−1 inhibited cell division. No effect on cell survival nor cell division was observed with the α-galactosyl Yariv reagent. Staining of β-1,3-glucan (callose) with aniline blue (AB) showed that a large amount of β-1,3-glucan was deposited in the regenerated cell walls of the protoplasts cultured without βglcY, while little or no β-1,3-glucan was stained by AB in protoplasts cultured with βglcY. These results suggest that AGPs and β-1,3-glucan play important roles in the survival and subsequent cell division of regenerated cells of M. polymorpha protoplast cultures.  相似文献   

17.
During the process of degradation of the cell wall of the yeast form of Pullularia pullulans by the lytic system of Micromonospora chalcea samples were withdrawn at different times and observed under phase contrast and electron microscope. The progressive lysis of the walls reveals a fibrillar component inside the apparently amorphous wall. Freeze etched preparations of cells during the formation and regeneration of protoplasts show that the cellular membrane is split and this method allows the smooth external face of the membrane and other internal face covered by particles to be seen. The fact that the smooth face of the membrane is only visible during the preparation or the regeneration of protoplasts and very rarely when intact cells are fractured, suggests a strong adherence between cell wall and this external layer of the membrane. During the regeneration which takes place as in most of the yeasts and moulds, a special study of the extension of the cell wall is made and a possible mechanism for this extension of the regenerated cell wall is proposed.  相似文献   

18.
Protoplasts prepared from complementary haploid strains ofSaccharomyces cerevisiae were studied with regard to their ability of conjugating. Neither fresh protoplasts nor the growing protoplasts possessing fibrillar walls exhibited sex specific agglutination or fusion. However, they were capable of inducing sexual activation in normal cells of opposite mating type. After completing the regeneration of cell walls the protoplasts could conjugate either with each other or with cells of opposite sex. The frequency of conjugations was low, about 1%, and was largely dependent on the degree of completition of the wall during regeneration. From the results the following conclusions may be drawn: 1. The initiation of mating is dependent on the integrity of the cell wall. 2. The sex specific morphogenetic changes do not occur in wall-less protoplasts but may happen after the protoplasts have regenerated their cell walls. 3. The lysis of cell walls does not occur until the walls come into close contact. 4. The fusion of plasma membranes in sex-activated protoplasts cannot be induced by artefucial agglutination.  相似文献   

19.
Production of guard cell protoplasts from onion and tobacco   总被引:10,自引:5,他引:5       下载免费PDF全文
Guard cell protoplasts (GCP) from young cotyledons of onion and tobacco were isolated in culture microchambers where optimal isolating and culture conditions could be determined in situ. The digestion course was quantified by following under polarized light the loss of.retardation of the birefringent cellulose of the guard cells. The assay showed that driselase has a 5-fold higher cellulytic activity than cellulysin. Driselase is, however, harmful to the GCP. Calcofluor staining was less adequate for establishing digestion courses because it increases sharply after exposing guard cells to cellulysin.  相似文献   

20.
In the present work we studied the effect of UV-C irradiation on short-term protoplast physiology, with the aim of identifying and assessing parameters which can provide valuable information for asymmetric fusion experiments. Protoplast viability, cell wall regeneration, density of cell suspension and intensity of DAPI signal were followed by using microscopy and by the detection of specific fluorescent or spectroscopic signals in a microplate reader. The control and irradiated mesophyll protoplasts of Cucumis sativus were used for this experiment. In contrast to control cells, viability of irradiated cells significantly decreased. Intensive cell wall regeneration was observed only in control cells, which also showed significantly higher DAPI fluorescence signal. Microscopy for determination of viability by FDA and cell wall regeneration by Calcofluor White were modified for microplate reader instrumentation. These methods are simple, fast and suitable for detection of the effectiveness of UV-C irradiation of cells intended to be used in asymmetric fusion experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号