首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramembranous cleavage of the beta-amyloid precursor protein by gamma-secretase is the final processing event generating amyloid-beta peptides, which are thought to be causative agents for Alzheimer's disease. Missense mutations in the presenilin genes co-segregate with early-onset Alzheimer's disease, and, recently, a close biochemical linkage between presenilins and the identity of gamma-secretase has been established. Here we describe for the first time that certain potent gamma-secretase inhibitors are able to interfere with the endoproteolytic processing of presenilin 1 (PS1). In addition, we identified a novel gamma-secretase inhibitor, [1S-benzyl-4R-[1-(5-cyclohexyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-3(R,S)-ylcarbamoyl)-S-ethylcarbamoyl]-2R-hydroxy-5-phenyl-pentyl]-carbamic acid tert-butyl ester (CBAP), which not only physically interacts with PS1, but upon chronic treatment produces a "pharmacological knock-down" of PS1 fragments. This indicates that the observed accumulation of full-length PS1 is caused by a direct inhibition of its endoproteolysis. The subsequent use of CBAP as a biological tool to increase full-length PS1 levels in the absence of exogenous PS1 expression has provided evidence that wild-type PS1 endoproteolysis is not required either for PS1/gamma-secretase complex assembly or trafficking. Furthermore, in cell-based systems CBAP does not completely recapitulate PS1 loss-of-function phenotypes. Even though the beta-amyloid precursor protein cleavage and the S3 cleavage of the Notch receptor are inhibited by CBAP, an impairment of Trk receptor maturation was not observed.  相似文献   

2.
The presenilin (PS) proteins are components of the gamma-secretase activity, which is central in the pathogenesis of Alzheimer's disease. Here we present a novel cell-based reporter gene assay for the quantification of PS-controlled gamma-secretase cleavage of the Alzheimer amyloid precursor protein (APP). We show that this assay offers several advantages, including increased sensitivity and specificity, improved quantification of cleavage, and simultaneous detection of all gamma-secretase cleavages in APP. Furthermore, the APP assay can be used in parallel with a similar assay that records gamma-secretase cleavage of a Notch receptor. The use of these assays to analyze the effects of two known gamma-secretase inhibitors and postulated PS active site mutants on APP and Notch processing demonstrated that inhibitors and mutants that differently affect Notch and APP cleavage can be identified rapidly. The possibility in using these assays for high throughput screening of candidate gamma-secretase inhibitors for APP and Notch in parallel opens up new vistas to systematically search for novel inhibitors that selectively block APP cleavage while not affecting Notch signaling.  相似文献   

3.
Nectin-1 is a member of the immunoglobulin superfamily and a Ca(2+)-independent adherens junction protein involved in synapse formation. Here we show that nectin-1alpha undergoes intramembrane proteolytic processing analogous to that of the Alzheimer's disease amyloid precursor protein, mediated by a presenilin (PS)-dependent gamma-secretase-like activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment of Chinese hamster ovary cells activated a first proteolytic event, resulting in ectodomain shedding of nectin-1alpha. Subsequent cleavage of the remaining 26-kDa membrane-anchored C-terminal fragment (CTF) was inhibited independently by three specific gamma-secretase inhibitors and by expression of the dominant negative form of PS1. The PS/gamma-secretase-like cleavage product was detected in vivo following proteasome inhibitor treatment of cells. An in vitro gamma-secretase assay confirmed the generation of a 24-kDa nectin-1alpha intracellular domain, peripherally associated with the membrane fraction. We also found nectin-1alpha to interact with the N-terminal fragment of PS1. Finally, gamma-secretase inhibition resulted in beta-catenin release from cell junctions, concomitantly with the accumulation of the 26-kDa nectin-1alpha CTF, suggesting that high levels of nectin-1alpha CTF interfere with TPA-induced remodeling of cell-cell junctions. Our results are consistent with a previously reported role for PS/gamma-secretase in adherens junction function involving cleavage of cadherins. Similar to nectin-1, other members of the immunoglobulin superfamily involved in synapse formation may also serve as substrates for PS/gamma-secretase-like intramembrane proteolytic activity.  相似文献   

4.
The voltage-gated sodium channel beta2-subunit (beta2) is a member of the IgCAM superfamily and serves as both an adhesion molecule and an auxiliary subunit of the voltage-gated sodium channel. Here we found that beta2 undergoes ectodomain shedding followed by presenilin (PS)-dependent gamma-secretase-mediated cleavage. 12-O-Tetradecanoylphorbol-13-acetate treatment or expression of an alpha-secretase enzyme, ADAM10, resulted in ectodomain cleavage of beta2 in Chinese hamster ovary cells. Subsequent cleavage of the remaining 15-kDa C-terminal fragment (beta2-CTF) was independently inhibited by three specific gamma-secretase inhibitors, expression of the dominant negative form of PS1, and in PS1/PS2 knock-out cells. gamma-Secretase inhibitor treatment also increased endogenous beta2-CTF levels in neuroblastoma cells and mouse primary neuronal cultures. In a cell-free gamma-secretase assay, we detected gamma-secretase activity-dependent generation of a 12 kDa beta2 intracellular domain (ICD), which was loosely associated with the membrane fraction. To assess the functional role of beta2 processing by gamma-secretase, we tested whether N-[N-(3,5-difluorophenylacetyl-l-alanyl)]-S-phenylglycine t-butylester (DAPT), a specific gamma-secretase inhibitor, would alter beta2-mediated cell adhesion and migration. We found that DAPT inhibited cell-cell aggregation and migration in a wound healing assay carried out with Chinese hamster ovary cells expressing beta2. DAPT also reduced migration of neuroblastoma cells in a modified Boyden chamber assay. Since DAPT treatment resulted in increased beta2-CTF levels, we also tested whether beta2-CTFs or beta2-ICDs would directly affect cell migration by overexpressing recombinant proteins. Interestingly, elevated levels of beta2-CTFs, but not ICDs, also blocked cell migration by 81 to 93%. Together, our findings show for the first time that beta2 is a PS/gamma-secretase substrate and gamma-secretase mediated cleavage of beta2-CTF is required for cell-cell adhesion and migration of beta2-expressing cells.  相似文献   

5.
6.
Biochemical and genetic studies have revealed that the presenilins interact with several proteins and are involved in the regulated intramembrane proteolysis of numerous type 1 membrane proteins, thereby linking presenilins to a range of cellular processes. In this study, we report the characterization of a highly conserved tumor necrosis factor receptor-associated factor-6 (TRAF6) consensus-binding site within the hydrophilic loop domain of presenilin-1 (PS-1). In coimmunoprecipitation studies we indicate that presenilin-1 interacts with TRAF6 and interleukin-1 receptor-associated kinase 2. Substitution of presenilin-1 residues Pro-374 and Glu-376 by site-directed mutagenesis greatly reduces the ability of PS1 to associate with TRAF6. By studying these interactions, we also demonstrate that the interleukin-1 receptor type 1 (IL-1R1) undergoes intramembrane proteolytic processing, mediated by presenilin-dependent gamma-secretase activity. A metalloprotease-dependent proteolytic event liberates soluble IL-1R1 ectodomain and produces an approximately 32-kDa C-terminal domain. This IL-1R1 C-terminal domain is a substrate for subsequent gamma-secretase cleavage, which generates an approximately 26-kDa intracellular domain. Specific pharmacological gamma-secretase inhibitors, expression of dominant negative presenilin-1, or presenilin deficiency independently inhibit generation of the IL-1R1 intracellular domain. Attenuation of gamma-secretase activity also impairs responsiveness to IL-1beta-stimulated activation of the MAPKs and cytokine secretion. Thus, TRAF6 and interleukin receptor-associated kinase 2 are novel binding partners for PS1, and IL-1R1 is a new substrate for presenilin-dependent gamma-secretase cleavage. These findings also suggest that regulated intramembrane proteolysis may be a control mechanism for IL-1R1-mediated signaling.  相似文献   

7.
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.  相似文献   

8.
We investigated the relationship between PS1 and gamma-secretase processing of amyloid precursor protein (APP) in primary cultures of neurons. Increasing the amount of APP at the cell surface or towards endosomes did not significantly affect PS1-dependent gamma-secretase cleavage, although little PS1 is present in those subcellular compartments. In contrast, almost no gamma-secretase processing was observed when holo-APP or APP-C99, a direct substrate for gamma-secretase, were specifically retained in the endoplasmic reticulum (ER) by a double lysine retention motif. Nevertheless, APP-C99-dilysine (KK) colocalized with PS1 in the ER. In contrast, APP-C99 did not colocalize with PS1, but was efficiently processed by PS1-dependent gamma-secretase. APP-C99 resides in a compartment that is negative for ER, intermediate compartment, and Golgi marker proteins. We conclude that gamma-secretase cleavage of APP-C99 occurs in a specialized subcellular compartment where little or no PS1 is detected. This suggests that at least one other factor than PS1, located downstream of the ER, is required for the gamma-cleavage of APP-C99. In agreement, we found that intracellular gamma-secretase processing of APP-C99-KK both at the gamma40 and the gamma42 site could be restored partially after brefeldin A treatment. Our data confirm the "spatial paradox" and raise several questions regarding the PS1 is gamma-secretase hypothesis.  相似文献   

9.
Following ectodomain shedding, Notch-1 undergoes presenilin (PS)-dependent constitutive intramembranous endoproteolysis at site-3. This cleavage is similar to the PS-dependent gamma-secretase cleavage of the beta-amyloid precursor protein (betaAPP). However, topological differences in cleavage resulting in amyloid beta-peptide (Abeta) or the Notch-1 intracellular domain (NICD) indicated independent mechanisms of proteolytic cleavage. We now demonstrate the secretion of an N-terminal Notch-1 Abeta-like fragment (Nbeta). Analysis of Nbeta by MALDI-TOF MS revealed that Nbeta is cleaved at a novel site (site-4, S4) near the middle of the transmembrane domain. Like the corresponding cleavage of betaAPP at position 40 and 42 of the Abeta domain, S4 cleavage is PS dependent. The precision of this cleavage is affected by familial Alzheimer's disease-associated PS1 mutations similar to the pathological endoproteolysis of betaAPP. Considering these similarities between intramembranous processing of Notch and betaAPP, we conclude that these proteins are cleaved by a common mechanism utilizing the same protease, i.e. PS/gamma-secretase.  相似文献   

10.
Presenilin-1 (PS1) is required for the release of the intracellular domain of Notch from the plasma membrane as well as for the cleavage of the amyloid precursor protein (APP) at the gamma-secretase cleavage site. It remains to be demonstrated whether PS1 acts by facilitating the activity of the protease concerned or is the protease itself. PS1 could have a gamma-secretase activity by itself or could traffic APP and Notch to the appropriate cellular compartment for processing. Human APP 695 and PS1 were coexpressed in Sf9 insect cells, in which endogenous gamma-secretase activity is not detected. In baculovirus-infected Sf9 cells, PS1 undergoes endoproteolysis and interacts with APP. However, PS1 does not cleave APP in Sf9 cells. In CHO cells, endocytosis of APP is required for Abeta secretion. Deletion of the cytoplasmic sequence of APP (APPDeltaC) inhibits both APP endocytosis and Abeta production. When APPDeltaC and PS1 are coexpressed in CHO cells, Abeta is secreted without endocytosis of APP. Taken together, these results conclusively show that, although PS1 does not cleave APP in Sf9 cells, PS1 allows the secretion of Abeta without endocytosis of APP by CHO cells.  相似文献   

11.
Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the PS1-DeltaExon9 mutation, which provokes a pathogenic increase in the Abeta42/Abeta40 ratio and dramatically reduces the cellular response to the Abeta42-lowering NSAID sulindac sulfide. This FAD PS1 mutant is unusual as a splice-site mutation results in deletion of amino acids Thr(291)-Ser(319) including the endoproteolytic cleavage site of PS1, and an additional amino acid exchange (S290C) at the exon 8/10 splice junction. By genetic dissection of the PS1-DeltaExon9 mutation, we now demonstrate that a synergistic effect of the S290C mutation and the lack of endoproteolytic cleavage is sufficient to elevate the Abeta42/Abeta40 ratio and that the attenuated response to sulindac sulfide results partially from the deficiency in endoproteolysis. Importantly, a wider screen revealed that a diminished response to Abeta42-lowering NSAIDs is common among aggressive FAD PS1 mutations. Surprisingly, these mutations were also partially unresponsive to gamma-secretase inhibitors of different structural classes. This was confirmed in a mouse model with transgenic expression of the PS1-L166P mutation, in which the potent gamma-secretase inhibitor LY-411575 failed to reduce brain levels of soluble Abeta42. In summary, these findings highlight the importance of genetic background in drug discovery efforts aimed at gamma-secretase, suggesting that certain AD mouse models harboring aggressive PS mutations may not be informative in assessing in vivo effects of gamma-secretase modulators and inhibitors.  相似文献   

12.
Alzheimer's disease (AD)-associated gamma-secretase is a presenilin (PS)- dependent proteolytic activity involved in the intramembraneous cleavage of the beta-amyloid precursor protein, Notch, LDL receptor-related protein, E-cadherin, and ErbB-4. This cut produces the corresponding intracellular domains (ICD), which are required for nuclear signaling of Notch and probably ErbB-4, the beta-amyloid precursor protein, E-cadherin, and the LDL receptor-related protein as well. We have now investigated CD44, a cell surface adhesion molecule, which also undergoes an intramembraneous cleavage to liberate its ICD. We demonstrate that this cleavage requires a PS-dependent gamma-secretase activity. A loss-of-function PS1 mutation, a PS1/PS2 knockout, as well as two independent and highly specific gamma-secretase inhibitors, abolish this cleavage. Surprisingly, small peptides similar to the amyloid beta-peptide (Abeta) are generated by an additional cut in the middle of the transmembrane region of CD44. Like Abeta, these CD44 beta-peptides are generated in a PS-dependent manner. These findings therefore suggest a dual intramembraneous cleavage mechanism mediated by PS proteins. The dual cleavage mechanism is required for nuclear signaling as well as removal of remaining transmembrane domains, a general function of PS in membrane protein metabolism.  相似文献   

13.
Mutations in presenilin 1 (PS1) and PS2 genes contribute to the pathogenesis of early onset familial Alzheimer's disease by increasing secretion of the pathologically relevant Abeta42 polypeptides. PS genes are also implicated in Notch signaling through proteolytic processing of the Notch receptor in Caenorhabditis elegans, Drosophila melanogaster, and mammals. Here we show that Drosophila PS (Psn) protein undergoes endoproteolytic cleavage and forms a stable high molecular weight (HMW) complex in Drosophila S2 or mouse neuro2a (N2a) cells in a similar manner to mammalian PS. The loss-of-function recessive point mutations located in the C-terminal region of Psn, that cause an early pupal-lethal phenotype resembling Notch mutant in vivo, disrupted the HMW complex formation, and abolished gamma-secretase activities in cultured cells. The overexpression of Psn in mouse embryonic fibroblasts lacking PS1 and PS2 genes rescued the Notch processing. Moreover, disruption of the expression of Psn by double-stranded RNA-mediated interference completely abolished the gamma-secretase activity in S2 cells. Surprisingly, gamma-secretase activity dependent on wild-type Psn was associated with a drastic overproduction of Abeta1-42 from human betaAPP in N2a cells, but not in S2 cells. Our data suggest that the mechanism of gamma-secretase activities through formation of HMW PS complex, as well as its abolition by loss-of-function mutations located in the C terminus, are highly conserved features in Drosophila and mammals.  相似文献   

14.
The presenilin (PS)/gamma-secretase system promotes production of the A beta (A beta) peptides by mediating cleavage of amyloid precursor protein (APP) at the gamma-sites. This system is also involved in the processing of type-I transmembrane proteins, including APP, cadherins and Notch1 receptors, at the epsilon-cleavage site, resulting in the production of peptides containing the intracellular domains (ICDs) of the cleaved proteins. Emerging evidence shows that these peptides have important biological functions, raising the possibility that their inhibition by gamma-secretase inhibitors may be detrimental to the cell. Here, we show that peptide E-Cad/CTF2, produced by the PS1/gamma-secretase processing of E-cadherin, promotes the lysosomal/endosomal degradation of the transmembrane APP derivatives, C99 and C83, and inhibits production of the APP ICD (AICD). In addition, E-Cad/CTF2 decreases accumulation of total secreted A beta. These data suggest a novel method to promote the non-amyloidogenic degradation of A beta precursors and to inhibit A beta production.  相似文献   

15.
Qyang Y  Chambers SM  Wang P  Xia X  Chen X  Goodell MA  Zheng H 《Biochemistry》2004,43(18):5352-5359
Mammalian presenilins (PS) consist of two highly homologous proteins, PS1 and PS2. Because of their indispensable activity in the gamma-secretase cleavage of amyloid precursor protein to generate Abeta peptides, inhibition of PS gamma-secretase activity is considered a potential therapy for Abeta blockage and Alzheimer's disease intervention. However, a variety of other substrates are also subject to PS-dependent processing, and it is thus imperative to understand the consequences of PS inactivation in vivo. Here we report a pivotal role of PS in hematopoiesis. Mice heterozygous for PS1 and homozygous for PS2 (PS1(+/)(-)PS2(-)(/)(-)) developed splenomegaly with severe granulocyte infiltration. This was preceded by an overrepresentation of granulocytic cells in the bone marrow and a greatly increased multipotent granulocyte-monocyte progenitor in the spleen. In contrast, hematopoietic stem cells and T- and B-lymphocytes were not affected. Importantly, treatment of wild-type splenocytes with a gamma-secretase inhibitor directly promoted the granulocyte-macrophage colony-forming unit (GM-CFU). These results establish a critical role of PS in myelopoiesis. Our finding that this activity can be directly modulated by its gamma-secretase activity has important safety implications concerning these inhibitors.  相似文献   

16.
Presenilin (PS, PS1/PS2) complexes are known to be responsible for the intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein and signaling receptor Notch. PS holoprotein undergoes endoproteolysis by an unknown enzymatic activity to generate NH(2)- and COOH-terminal fragments, a process that is required for the formation of the active and stable PS/-gamma-secretase complex. Biochemical and genetic studies have recently identified nicastrin, APH-1, and PEN-2 as essential cofactors that physically interact with PS1 and are necessary for the gamma-secretase activity. However, their precise function in regulating the PS complex and gamma-secretase activity remains unknown. Here, we demonstrate that endogenous PEN-2 preferentially interacts with PS1 holoprotein. Down-regulation of PEN-2 expression by small interfering RNA (siRNA) abolishes the endoproteolysis of PS1, whereas overexpression of PEN-2 promotes the production of PS1 fragments, indicating a critical role for PEN-2 in PS1 endoproteolysis. Interestingly, accumulation of full-length PS1 resulting from down-regulation of PEN-2 is alleviated by additional siRNA down-regulation of APH-1. Furthermore, overexpression of APH-1 facilitates PEN-2-mediated PS1 proteolysis, resulting in a significant increase in PS1 fragments. Our data reveal a direct role of PEN-2 in proteolytic cleavage of PS1 and a regulatory function of APH-1, in coordination with PEN-2, in the biogenesis of the PS1 complex.  相似文献   

17.
Presenilin (PS)-dependent gamma-secretase cleavage is the final proteolytic step in generating amyloid beta protein (A beta), a key peptide involved in the pathogenesis of Alzheimer's disease. PS undergoes endoproteolysis by an unidentified 'presenilinase' to generate the functional N-terminal and C-terminal fragment heterodimers (NTF/CTF) that may harbor the gamma-secretase active site. To better understand the relationship between presenilinase and gamma-secretase, we characterized the biochemical properties of presenilinase and compared them with those of gamma-secretase. Similar to gamma-secretase, presenilinase was most active at acidic pH 6.3. Aspartyl protease inhibitor pepstatin A blocked presenilinase activity with an IC50 of approximately 1 microM. Difluoroketone aspartyl protease transition state analogue MW167 was relatively selective for presenilinase (IC50 < 1 microM) over gamma-secretase (IC50-16 microM). Importantly, removing the transition state mimicking moiety simultaneously abolished both presenilinase and gamma-secretase inhibition, suggesting that presenilinase, like gamma-secretase, is an aspartyl protease. Interestingly, several of the most potent gamma-secretase inhibitors (IC50 = 0.3 or 20 nM) failed to block presenilinase activity. Although de novo generation of PS1 fragments coincided with production of A beta in vitro, blocking presenilinase activity without reducing pre-existing fragment levels permitted normal de novo generation of A beta and amyloid intracellular domain. Therefore, presenilinase has characteristics of an aspartyl protease, but this activity is distinct from gamma-secretase.  相似文献   

18.
Proteolytic processing of amyloid precursor protein generates beta-amyloid (Abeta) peptides that are deposited in senile plaques in brains of aged individuals and patients with Alzheimer's disease. Presenilins (PS1 and PS2) facilitate the final step in Abeta production, the intramembranous gamma-secretase cleavage of amyloid precursor protein. Biochemical and pharmacological evidence support a catalytic or accessory role for PS1 in gamma-secretase cleavage, as well as a regulatory role in select membrane protein trafficking. In this report, we demonstrate that PS1 is required for maturation and cell surface accumulation of nicastrin, an integral component of the multimeric gamma-secretase complex. Using kinetic labeling studies we show that in PS1(-/-)/PS2(-/-) cells nicastrin fails to reach the medial Golgi compartment, and as a consequence, is incompletely glycosylated. Stable expression of human PS1 restores these deficiencies in PS1(-/-) fibroblasts. Moreover, membrane fractionation studies show co-localization of PS1 fragments with mature nicastrin. These results indicate a novel chaperone-type role for PS1 and PS2 in facilitating nicastrin maturation and transport in the early biosynthetic compartments. Our findings are consistent with PS1 influencing gamma-secretase processing at multiple steps, including maturation and intracellular trafficking of substrates and component(s) of the gamma-secretase complex.  相似文献   

19.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

20.
The intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is dependent on biologically active presenilins (PS). Notch also undergoes a similar PS-dependent gamma-secretase-like cleavage, resulting in the liberation of the Notch intracellular domain (NICD), which is critically required for developmental signal transduction. gamma-Secretase processing of APP results in the production of a similar fragment called AICD (APP intracellular domain), which may function in nuclear signaling as well. AICD, like NICD, is rapidly removed. By using a battery of protease inhibitors we demonstrate that AICD, in contrast to NICD, is degraded by a cytoplasmic metalloprotease. In vitro degradation of AICD can be reconstituted with cytoplasmic fractions obtained from neuronal and non-neuronal cells. Taking into account the inhibition profile and the cytoplasmic localization, we identified three candidate enzymes (neurolysin, thimet oligopeptidase, and insulin-degrading enzyme (IDE), also known as insulysin), which all are involved in the degradation of bioactive peptides in the brain. When insulin, a well characterized substrate of IDE, was added to the in vitro degradation assay, removal of AICD was efficiently blocked. Moreover, overexpression of IDE resulted in enhanced degradation of AICD, whereas overexpression of the inactive IDE E111Q mutant did not affect AICD degradation. Finally, immunodepletion of IDE significantly reduced the AICD degrading activity. Therefore our data demonstrate that IDE, which is one of the proteases implicated in the removal of extracellular Abeta, also removes the cytoplasmic product of gamma-secretase cleaved APP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号