首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Raphidophytes (class Raphidophyceae) produce high levels of reactive oxygen species (ROS), yet little is known regarding cellular scavenging mechanisms needed for protection against these radicals. Enzymatic activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in conjunction with the production of superoxide (O2??) and hydrogen peroxide (H2O2) in batch cultures of five different raphidophytes species during early exponential, late‐exponential, and stationary growth phases. The greatest concentrations of O2?? per cell were detected during exponential growth with reduced levels in stationary phases in raphidophytes Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara, Chattonella marina (Subrahman.) Y. Hara et Chihara, and Chattonella antiqua (Hada) Ono (strain 18). Decreasing trends from exponential to stationary phases for SOD activity and H2O2 per cell were observed in all species tested. Significant correlations between O2?? per cell and SOD activity per cell over growth phase were only observed in three raphidophytes (Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua strain 18), likely due to different cellular locations of externally released O2?? radicals and intracellular SOD enzymes measured in this study. CAT activity was greatest at early exponential phase for several raphidophytes, but correlations between H2O2 per cell and CAT activity per cell were only observed for Fibrocapsa japonica Toriumi et Takano, Chattonella antiqua (strain 18), and Chattonella subsalsa Biecheler. Our results suggest that SOD and CAT play important protective roles against ROS during exponential growth of several raphidophytes, while other antioxidant pathways may play a larger role for scavenging ROS during later growth.  相似文献   

2.
    
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

3.
Superoxide Production by the Mitochondrial Respiratory Chain   总被引:29,自引:0,他引:29  
This mini-review describes the role of different mitochondrial components in the formation of reactive oxygen species under normal and pathological conditions and the effect of inhibitors and uncouplers on superoxide formation.  相似文献   

4.
         下载免费PDF全文
Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the underlying mechanism remains unclear. In this study, we evaluate the role of HMF on the regulation of cellular reactive oxygen species (ROS) in human neuroblastoma SH-SY5Y cells. We found that HMF exposure led to ROS decrease, and that restoring the decrease by additional H2O2 rescued the HMF-enhanced cell proliferation. The measurements on ROS related indexes, including total anti-oxidant capacity, H2O2 and superoxide anion levels, and superoxide dismutase (SOD) activity and expression, indicated that the HMF reduced H2O2 production and inhibited the activity of CuZn-SOD. Moreover, the HMF accelerated the denaturation of CuZn-SOD as well as enhanced aggregation of CuZn-SOD protein, in vitro. Our findings indicate that CuZn-SOD is able to response to the HMF stress and suggest it a mediator of the HMF effect.  相似文献   

5.
    
Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the underlying mechanism remains unclear. In this study, we evaluate the role of HMF on the regulation of cellular reactive oxygen species (ROS) in human neuroblastoma SH-SY5Y cells. We found that HMF exposure led to ROS decrease, and that restoring the decrease by additional H2O2 rescued the HMF-enhanced cell proliferation. The measurements on ROS related indexes, including total anti-oxidant capacity, H2O2 and superoxide anion levels, and superoxide dismutase (SOD) activity and expression, indicated that the HMF reduced H2O2 production and inhibited the activity of CuZn-SOD. Moreover, the HMF accelerated the denaturation of CuZn-SOD as well as enhanced aggregation of CuZn-SOD protein, in vitro. Our findings indicate that CuZn-SOD is able to response to the HMF stress and suggest it a mediator of the HMF effect.  相似文献   

6.
The effect of hydrogen peroxide on the activities of catalase and superoxide dismutase (SOD) in S. cerevisiae has been studied under different experimental conditions: various H2O2 concentrations, time exposures, yeast cell densities and media for stress induction. The yeast treatment with 0.25–0.50 mM H2O2 led to an increase in catalase activity by 2–3-fold. At the same time, hydrogen peroxide caused an elevation by 1.6-fold or no increase in SOD activity dependently on conditions used. This effect was cancelled by cycloheximide, an inhibitor of protein synthesis in eukaryotes. Weak elevation of catalase and SOD activities in cells treated with 0.25–0.50 mM H2O2 found in this study does not correspond to high level of synthesis of the respective enzyme molecules observed earlier by others. It is well known that exposure of microorganisms to low sublethal concentrations of hydrogen peroxide leads to the acquisition of cellular resistance to a subsequent lethal oxidative stress. Hence, it makes possible to suggest that S. cerevisiae cells treated with low sublethal doses of hydrogen peroxide accumulate non-active stress-protectant molecules of catalase and SOD to survive further lethal oxidant concentrations.  相似文献   

7.
The activity of erythrocyte cytosolic superoxide dismutase from rat, bovine, man and duck was considerably increased when measured after preparation or incubation in media pretreated with negative air ions (mostly superoxide) from electroeffluvial ion generator. 0.5–1.0 μM H2O2 was found in incubation medium after treatment with air ions. The stimulatory effect of air ions on superoxide dismutase activity was mimicked by addition of 0.5–6 μM H2O2. The primary physicochemical mechanism of beneficial biological action of negative air ions is suggested to be related to the stimulation of superoxide dismutase activity by micromolar concentrations of H2O2.  相似文献   

8.
Barley (Hordeum vulgare) seedlings were treated with spermidine prior to water deficit to determine whether this polyamine is able to affect the activity of superoxide dismutase -SOD (EC 1.15.1.1) responsible for hydrogen peroxide and superoxide radical level. Short-term dehydration (24h) resulted in decrease of the SOD specific activity and a distinct increase in the superoxide anion and hydrogen peroxide contents. Polyamine treatment caused a substantial reduction in the contents of these two stress-raised reactive oxygen species and thereby lowered the oxidative stress in plant cells. Antioxidant system as an important component of the water-stress-protective mechanism can be changed by polyamines, able to moderate the radical scavenging system and to lessen in this way the oxidative stress.  相似文献   

9.
The role of reactive oxygen species (ROS) during pollen tube growth has been well established, but its involvement in the early germination stage is poorly understood. ROS production has been reported in germinating tobacco pollen, but evidence for a clear correlation between ROS and germination success remains elusive. Here, we show that ROS are involved in germination and pollen tube formation in kiwifruit. Using labelling with dihydrofluorescein diacetate (H(2) FDA) and nitroblue tetrazolium (NBT), endogenous ROS were detected immediately following pollen rehydration and during the lag phase preceding pollen tube emergence. Furthermore, extracellular H(2) O(2) was found to accumulate, beginning a few minutes after pollen suspension in liquid medium. ROS production was essential for kiwifruit pollen performance, since in the presence of compounds acting as superoxide dismutase/catalase mimic (Mn-5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H,23H-porphin, Mn-TMPP) or as NADPH oxidase inhibitor (diphenyleneiodonium chloride, DPI), ROS levels were reduced and pollen tube emergence was severely or completely inhibited. Moreover, ROS production was substantially decreased in the absence of calcium, and by chromium and bisphenol A, which inhibit germination in kiwifruit. Peroxidase activity was cytochemically revealed after rehydration and during germination. In parallel, superoxide dismutase enzymes, particularly the Cu/Zn-dependent subtype - which function as superoxide radical scavengers - were detected by immunoblotting and by an in-gel activity assay in kiwifruit pollen, suggesting that ROS levels may be tightly regulated. Timing of ROS appearance, early localisation at the germination aperture and strict requirement for germination clearly suggest an important role for ROS in pollen grain activation and pollen tube initiation.  相似文献   

10.
Intact chloroplasts isolated from sulphur dioxide fumigatedHardwickia binata leaves showed inhibition of PS II electron transport activity without any significant effect on photosystem I. Sulphur dioxide exposed leaves accumulated more hydrogen peroxide than those from non-fumigated plants and this was caused by increase in superoxide radical production. Hydrogen peroxide formation was inhibited by addition of cytochrome C and superoxide disrnutase. In sulphur dioxide fumigated leaves, increase in superoxide dismutase activity showed resistance to sulphite toxicity. The localization of ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase activities in chloroplasts provide evidence for the photogeneration of ascorbate. The scavenging of hydrogen peroxide in chloroplast due to ascorbate regenerated from DHA by the system: PS I → Fd → NADP → glutathione. The system can be considered as a means for preliminary detoxification of sulphur dioxide by chloroplasts  相似文献   

11.
《Free radical research》2013,47(2):63-70
Oxygen radicals are no doubt involved in the development of many pathological states. Nevertheless, the possibility that oxygen radical production was selected for during biological evolution in order to perform useful roles in relation to cellular metabolism is contemplated; previous data on this subject are briefly reviewed. The concept of an “oxygen radical cycle” is proposed as a useful theoretical model.  相似文献   

12.
Oxygen radicals are no doubt involved in the development of many pathological states. Nevertheless, the possibility that oxygen radical production was selected for during biological evolution in order to perform useful roles in relation to cellular metabolism is contemplated; previous data on this subject are briefly reviewed. The concept of an “oxygen radical cycle” is proposed as a useful theoretical model.  相似文献   

13.
The involvement of enzymic antioxidant system, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase in defense reaction to environmental stress evoked by air and soil pollution, was seasonally studied on three populations of Scots pine (Pinus sylvestris L.) growing on experimental areas close two industrial objects in Poland. The first of them (Luboón) is localised near a phosphate fertiliser factory, the second (Głogów) near a copper foundry, and control stand is placed in Kórnik. Głogów is the most polluted site, where in 1998 monthly mean daily concentrations was: SO2 - 17 μg·m−3, NOx- 12 μg·m−3 and dust containing heavy metals (Cu, Pb, Cd) - 29 μg·m−3. Trees in Luboń were influenced for many years by high concentration of SO2 and fluor compounds. Few years ago emissions were markedly reduced, but changes in the soil (low pH and high concentration of aluminium ions) still influence the growth of trees. In needles of two populations: 3 (Russia) and 8 (Poland), from the polluted sites Głogów and Luboń, activities of superoxide dismutase (SOD) and guaiacol peroxidase (PO) were significantly higher compared to Kórnik. However, in one population (16 - Slovakia), such dependance was not evident. Activity of ascorbate peroxidase (AP) measured in winter was also higher in needles from polluted sites. The results indicated that the sensitivity of free radical scavenging system in Scots pine needles differs among populations.  相似文献   

14.
活性氧参与生物体内复杂的代谢过程。本文对它在家蚕个体发育过程中的生物学功能进行了初步探讨。 取1岁龄家蚕蛹分别注射H2O2、脱皮激素(Ecdn)、保幼激素(JH)和还原型谷胱苷肽(GSH),培养;定期取样测定家蚕体内H2O2含量。 对家蚕整个幼虫期(Fig.1),尤其是大眠期(Fig.2)、化蛹期(Table1)、蛹期(Fig.3-a,b,c)以及成虫期(Fig.4, Table 2)的研究结果表明,家蚕体内H2O2代谢具有如下特点:(1)入眠、化蛹、化蛾和死亡前H2O2含量都显著下降;(2)幼虫期1-3龄H2O2含量逐步下降,4~5龄H2O2含量回升,蛹期和成虫期H2O2含量与4~5龄接近;(3)每个龄期的中期H2O2含量最高;(4)CAT活性与H2O2含量呈负相关变化,前者迟于后者;另外,CAT活性远远大于SOD活性;(5)Ecdn、GSH处理可以降低家蚕蛹期H2O2含量,并使其提前下降,JH、H2O2处理含量下降,并相应地提早推迟化蛾;(6)成虫期雄蛾H2O2含量、SOD和CAT活性都显著高于同时期雌蛾。家蚕体内H2O2含量的变化与其发育密切相关。H2O2含量下降是变态的信号;家蚕成虫期H2O2 在性别上的  相似文献   

15.
    
Freshly-added iron only slightly affected the growth of iron-sufficient cells of the green alga Scenedesmus incrassatulus Bohl, strain R-83, but induced accumulation of malondialdehyde (MDA) in cells and excretion of MDA in the medium. These effects were stronger in response to Fe2+ as compared to Fe3+, but Fe3+ induced the release of more iron-binding chelators from these cells than Fe2+. Fe3+ added either in dark or in light induced release of equal concentrations of iron-complexing agents, part of which formed strong chelates with iron in the medium. Exogenously added hydrogen peroxide inhibited iron-induced release of chelators but the effect was removed by addition of the hydroxyl radical scavenger dimethylsulfoxide (DMSO). Malondialdehyde also inhibited the release of chelators. Release of chelators was induced in the absence of iron salts by photoexcited chlorophyll (Chl). The Chl-induced release was efficiently inhibited by singlet oxygen scavengers such as dimethylfuran, -carotene, sodium azide and vitamin B6, and stimulated in D2O or DMSO. Exogenously added catalase inhibited the release more than added superoxide dismutase. The Fe3-induced release of chelators was also inhibited by scavengers of singlet oxygen, but was not affected by sodium azide and by ethanol. Hence both H2O2 and singlet oxygen were involved in induction of chelator release in the absence of iron in light. The induction of chelator release by iron in dark involved H2O2, but not singlet oxygen.  相似文献   

16.
Salicylic acid (SA) plays an important role in the regulation of plant growth and development in response to water deficit. The effect of SA (0, 0.4 and 0.8?mM) on some physiological parameters of three soybean genotypes was investigated in three irrigation schedules included (85%, 65% and 45% of field capacity) during 2014–2015. Results showed that water deficit decreased stomatal conductance, leaf area index, relative water content, membrane stability index, yield components and grain yield particularly in L17 genotype. Activities of superoxide dismutase, ascorbate peroxidase and concentration of hydrogen peroxide, proline and total protein were increased in response to water deficit as well as SA applications. SA inhibited catalase activity resulting in increased hydrogen peroxide accumulation in soybean genotypes. Application of 0.4?mM SA decreased the adverse effects of water deficit in soybean genotypes by elevation of antioxidant enzymes activity and reducing malondialdehyde formation especially in Williams genotype.  相似文献   

17.
该文比较研究了黑暗和光照条件下C3盐生植物盐地碱蓬(Suaeda salsa)叶片甜菜红素积累和H2O2含量及其抗氧化酶活性的关系,实验分析了甜菜红素体外抗氧化性能,以期揭示诱导盐地碱蓬甜菜红素积累的可能机制以及甜菜红素积累的生理生态意义。结果表明:暗期处理和营养液中加入一定浓度的H2O2都明显促进盐地碱蓬叶片H2O2含量、甜菜红素的含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性,而且叶片中 H2O2含量与甜菜红含量、SOD和CAT活性具有正相关性;盐地碱蓬甜菜红素体外清除羟自由基的能力明显强于维生素C,而清除超氧阴离子能力低于维生素C。这些结果表明:黑暗作为一种环境胁迫因子诱导盐地碱蓬叶片甜菜红素的积累可能是由自由基介导的,甜菜红素的积累可能与提高植物的抗氧化能力有关。  相似文献   

18.
    
《Free radical research》2013,47(1):845-850
Oxidative stress responses were tested in the unicellular cyanobacterium synechococcus PCC 7942 (R-2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. The extent and time course of oxidative stress were related to the activities of ascorbate peroxidase and catalase. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresse. Catalase activity was inhibited in cells, treated with high H2O2 concentrations, and was not induced under photooxidative stress. Catalase was specifically induced in cells treated with cumene hydroperoxide.

Superoxide dismutase activity increased under conditions generating superoxide, such as high light intensities. The induction of the antioxidative enzymes was light dependent and was inhibited by chloramphenicol.  相似文献   

19.
This research investigated microbial responses to bioremediation with hydrogen peroxide (H2O2) as a supplemental oxygen source. Columns containing aquifer material from Traverse City, MI, USA, were continuously supplied with benzene, toluene, ethylbenzene, o-xylene and m-xylene (BTEX) and H2O2 in increasing concentration. The microbial responses studied were changes in microbial numbers, community structure, degradative ability, and activity of catalase and superoxide dismutase (SOD). Both adaptation to H2O2 and stress-related consequences were observed. Adaptation to H2O2 was demonstrated by increased catalase and SOD activity during the course of the experiment. The microbial community in the untreated aquifer material used in the columns consisted primarily of Corynebacterium sp and Pseudomonas fluorescens. Following amendment with 500 mg L−1 H2O2, the column inlet was dominated by P. fluorescens with few Corynebacterium sp present; Xanthomonas maltophilia dominated the middle and outlet sections. Dimethyl phenols detected in the effluent of two of the biologically active columns were probably metabolic products. The ratio of oxygen to BTEX mass consumed was approximately 0.3 before H2O2 addition, 0.7 following 10 mg L−1 H2O2 supplementation, and 2.6 over the course of the experiment. Abiotic decomposition H2O2 was observed in a sterile column and impeded flow at a feed concentration of 500 mg L−1 H2O2. Increasing the BTEX concentration supplied to the biologically active columns eliminated flow disruptions by satisfying the carbon and energy demand of the oxygen evolved by increasing catalase activity. Received 15 February 1996/ Accepted in revised form 15 July 1996  相似文献   

20.
水葫芦[Eichhornia crassipes(Mart)Solms]是世界上繁殖最快、危害最严重的多年生水生杂草之一。为了避免化学除草剂对水体的污染,生物防治已成为当前水葫芦治理的重要方向。马缨丹(Lantana camara)是马鞭草科的一种植物,其叶片提取物对水葫芦有很强的毒性。研究结果表明:经马缨丹叶提取液处理的水葫芦叶片中,超氧物歧化酶(SOD)活性与H2O2浓度均显著升高,但过氧化氢酶的活性受到抑制,膜脂过氧化程度明显增加。H2O2的组织化学染色结果表明H2O2在气孔细胞中有异常高的积累,H2O2过量产生同时导致水葫芦叶片失绿与细胞死亡。因此,氧胁迫可能是马缨丹提取液对水葫芦毒害的主要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号