首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cells, as they develop in the thymus come to express antigen receptors. The specificity of these receptors cannot be predicted and must include many with potential anti-self reactivity. Those that encounter self-antigens, in association with self-MHC (major histocompatibility complex), with high affinity are inactivated and do not leave the thymus. Not all self-antigens however are expressed in the thymus and thus many potentially self-reactive T cells enter the periphery. It poses therefore a fundamental immunological question: how peripheral self-tolerance is maintained in health? Dendritic cells (DC) play a central role in the activation of T cells, especially na?ve T cells. Their importance in initiating immune responses against pathogens has been well established. However, DC represent complex populations of cells. Recent advances in our knowledge including molecular understanding of DC/T cell interactions have begun to reveal another important dimension of DC functions in the periphery, being not only initiators but also regulators of the immune system. This review summarises recent findings on the roles of DC in the regulation of immune responses and the maintenance of peripheral tolerance, in an attempt to explain how break down of this may lead to immunopathologies and autoimmunity. The concept of a regulatory DC and its possible role in the generation of T regulatory cells in health and in diseases are also discussed. Based on these, the need for a "continuing education" of the immune system throughout one's life, in which DC are again the "tutors", is postulated.  相似文献   

2.
The induction of antigen-specific T cell tolerance and its maintenance in the periphery is critical for the prevention of autoimmunity. Recent evidence shows that dendritic cells (DC) not only initiate T cell responses, but are also involved in silencing of T cell immune responses. The functional activities of DC are mainly dependent on their state of activation and differentiation, that is, terminally differentiated mature DC can efficiently induce the development of T effector cells, whereas immature DC are involved in maintenance of peripheral tolerance. The means by which immature DC maintain peripheral tolerance are not entirely clear, however, their functions include the induction of anergic T cells, T cells with regulatory properties as well as the generation of T cells that secrete immunomodulatory cytokines. This review summarizes the current knowledge about the immunoregulatory role of immature DC that might act as guardians for the induction and maintenance of T cell tolerance in the periphery.  相似文献   

3.
Dendritic cells (DCs) are professional APCs which have the unique ability to present both foreign and self-Ags to T cells and steer the outcome of immune responses. Because of these characteristics, DCs are attractive vehicles for the delivery of therapeutic vaccines. Fully matured DCs are relatively well-defined and even used in clinical trials in cancer. DCs also have the potential to influence the outcome of autoimmunity by modulating the underlying autoimmune response. To gain a better appreciation of the abilities and mechanisms by which immunomodulatory DCs influence the outcome of T cell responses, we studied several immunomodulatory DCs (TNF-, IL-10-, or dexamethasone-stimulated bone marrow-derived DCs) side by side for their ability to modulate T cell responses and autoimmune diseases. Our data show that these differentially modulated DCs display a different composition of molecules involved in T cell activation. Although, all DC subsets analyzed were able to inhibit the induction of collagen-induced arthritis, the modulation of the underlying immune response was different. Vaccination with TNF- or IL-10-modulated DCs altered the Th1/Th2 balance as evidenced by the induction of IL-5- and IL-10-secreting T cells and the concomitant reduction of the IgG2a-IgG1 ratio against the immunizing Ag. In contrast, DCs modulated with dexamethasone did not affect the ratio of IL-5-producing vs IFN-gamma-producing T cells and tended to affect the Ab response in a nonspecific manner. These data indicate that distinct mechanisms can be used by distinct DC subsets to change the outcome of autoimmunity.  相似文献   

4.
Dendritic cells (DCs) play a key role in initiating immune responses and maintaining immune tolerance. In addition to playing a role in thymic selection, DCs play an active role in tolerance under steady state conditions through several mechanisms which are dependent on IL-10, TGF-β, retinoic acid, indoleamine-2,3,-dioxygenase along with vitamin D. Several of these mechanisms are employed by DCs in induction of regulatory T cells which are comprised of Tr1 regulatory T cells, natural and inducible foxp3+ regulatory T cells, Th3 regulatory T cells and double negative regulatory T cells. It appears that certain DC subsets are highly specialized in inducing regulatory T cell differentiation and in some tissues the local microenvironment plays a role in driving DCs towards a tolerogenic response. In this review we discuss the recent advances in our understanding of the mechanisms underlying DC driven regulatory T cell induction.  相似文献   

5.
Plasmacytoid dendritic cells (PDCs) have been shown to present Ags and to contribute to peripheral immune tolerance and to Ag-specific adaptive immunity. However, modulation of adaptive immune responses by selective Ag targeting to PDCs with the aim of preventing autoimmunity has not been investigated. In the current study, we demonstrate that in vivo Ag delivery to murine PDCs via the specifically expressed surface molecule sialic acid binding Ig-like lectin H (Siglec-H) inhibits Th cell and Ab responses in the presence of strong immune stimulation in an Ag-specific manner. Correlating with sustained low-level MHC class II-restricted Ag presentation on PDCs, Siglec-H-mediated Ag delivery induced a hyporesponsive state in CD4(+) T cells leading to reduced expansion and Th1/Th17 cell polarization without conversion to Foxp3(+) regulatory T cells or deviation to Th2 or Tr1 cells. Siglec-H-mediated delivery of a T cell epitope derived from the autoantigen myelin oligodendrocyte glycoprotein to PDCs effectively delayed onset and reduced disease severity in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by interfering with the priming phase without promoting the generation or expansion of myelin oligodendrocyte glycoprotein-specific Foxp3(+) regulatory T cells. We conclude that Ag delivery to PDCs can be harnessed to inhibit Ag-specific immune responses and prevent Th cell-dependent autoimmunity.  相似文献   

6.
Dendritic cells (DCs) link innate immune sensing of the environment to the initiation of adaptive immune responses. Given their supreme capacity to interact with and present antigen to T cells, DCs have been proposed as key mediators of immunological tolerance in the steady state. However, recent evidence suggests that the role of DCs in central and peripheral T-cell tolerance is neither obligate nor dominant. Instead, DCs appear to regulate multiple aspects of T-cell physiology including tonic antigen receptor signaling, priming of effector T-cell response, and the maintenance of regulatory T cells. These diverse contributions of DCs may reflect the significant heterogeneity and "division of labor" observed between and within distinct DC subsets. The emerging complex role of different DC subsets should form the conceptual basis of DC-based therapeutic approaches toward induction of tolerance or immunization.  相似文献   

7.
Dendritic cells (DCs) activate and shape the adaptive immune response by capturing antigens, migrating to peripheral lymphoid organs where naïve T cells reside, expressing high levels of MHC and costimulatory molecules and secreting cytokines and chemokines. DCs are endowed with a high degree of functional plasticity and their functions are tightly regulated. Besides initiating adaptive immune responses, DCs play a key role in maintaining peripheral tolerance toward self-antigens. On the basis of the information gathered from the tissue where they reside, DCs adjust their functional activity to ensure that protective immunity is favoured while unwanted or exaggerated immune responses are prevented. A wide variety of signals from neighbouring cells affecting DC functional activity have been described. Here we will discuss the complex role of extracellular nucleotides in the regulation of DC function and the role of P2 receptors as possible tools to manipulate immune responses.  相似文献   

8.
9.
Under healthy conditions, there is a balance between tolerance to self-tissue constituents and immunity against foreign antigens. Autoimmunity diseases (AD) take place when that equilibrium is disrupted and the immune response is directed to self-antigens, leading to injury or destruction of host tissues. The mechanisms conducing to the loss of immune tolerance remain largely unknown. The recent appearance of biological therapies has contributed to significant reduction in morbidity. However, currently available therapies are associated with important side effects and work only as palliative treatments. Dendritic cells (DCs) have emerged as key players in developing and maintaining adaptive immunity due to their capacity to prime and modulate T cell function. Therefore, because DCs work as central modulators of immune tolerance, it is likely that alterations in their function can lead to the onset of autoimmune-inflammatory diseases. By modulating DC function, novel pathways in antigen-specific tolerance could be established. In this article, the possible contribution of altered DC-T cell interactions to the onset of autoimmunity are discussed. In addition, we expand on the notion that some of the functions of these cells could be relevant targets for intervening therapies aimed to restore the balance or even prevent the loss of tolerance.  相似文献   

10.
Dendritic cells (DC), the most potent APCs, can initiate the immune response or help induce immune tolerance, depending upon their level of maturation. DC maturation is associated with activation of the NF-kappaB pathway, and the primary NF-kappaB protein involved in DC maturation is RelB, which coordinates RelA/p50-mediated DC differentiation. In this study, we show that silencing RelB using small interfering RNA results in arrest of DC maturation with reduced expression of the MHC class II, CD80, and CD86. Functionally, RelB-silenced DC inhibited MLR, and inhibitory effects on alloreactive immune responses were in an Ag-specific fashion. RelB-silenced DC also displayed strong in vivo immune regulation. An inhibited Ag-specific response was seen after immunization with keyhole limpet hemocyanin-pulsed and RelB-silenced DC, due to the expansion of T regulatory cells. Administration of donor-derived RelB-silenced DC significantly prevented allograft rejection in murine heart transplantation. This study demonstrates for the first time that transplant tolerance can be induced by means of RNA interference using in vitro-generated tolerogenic DC.  相似文献   

11.
Dendritic cells (DC) are considered nature's adjuvants. They are potent stimulators of naive T cells and key inducers of primary immune responses. In recent times it has become clear that they can also play a central role in the development of T cell tolerance. Further complicating our understanding of DC function is the realization that DC can no longer be viewed as a homogeneous cell type. Rather, they exist as a complex mixture of strikingly different cell populations. The mechanisms that drive the conflicting immunological outcomes of tolerance and immunity have been the subject of intense scrutiny in recent years, most recently in terms of how the various DC subsets are involved in these events. Here we review recent experiments that provide insights into how DC subsets control the outcome of T cell activation and in so doing select between immunity and tolerance induction.  相似文献   

12.
The uptake of immune complexes by FcRs on APCs augments humoral and cellular responses to exogenous Ag. In this study, CD11c+ dendritic cells are shown to be responsible in vivo for immune complex-triggered priming of T cells. We examine the consequence of Ab-mediated uptake of self Ag by dendritic cells in the rat insulin promoter-membrane OVA model and identify a role for the inhibitory FcgammaRIIB in the maintenance of peripheral CD8 T cell tolerance. Effector differentiation of diabetogenic OT-I CD8+ T cells is enhanced in rat insulin promoter-membrane OVA mice lacking FcgammaRIIB, resulting in a high incidence of diabetes. FcgammaRIIB-mediated inhibition of CD8 T cell priming results from suppression of both DC activation and cross-presentation through activating FcgammaRs. Further FcgammaRIIB on DCs inhibited the induction of OVA-specific Th1 effectors, limiting Th1-type differentiation and memory T cell accumulation. In these MHC II-restricted responses, the presence of FcgammaRIIB only modestly affected initial CD4 T cell proliferative responses, suggesting that FcgammaRIIB limited effector cell differentiation primarily by inhibiting DC activation. Thus, FcgammaRIIB can contribute to peripheral tolerance maintenance by inhibiting DC activation alone or by also limiting processing of exogenously acquired Ag.  相似文献   

13.
The severity and intensity of autoimmune disease in immune dysregulation, polyendocrinopathy, enteropathy, X‐linked (IPEX) patients and in scurfy mice emphasize the critical role played by thymus‐derived regulatory T cells (tTregs) in maintaining peripheral immune tolerance. However, although tTregs are critical to prevent lethal autoimmunity and excessive inflammatory responses, their suppressive mechanism remains elusive. Here, we demonstrate that tTregs selectively inhibit CD27/CD70‐dependent Th1 priming, while leaving the IL‐12‐dependent pathway unaffected. Immunized mice depleted of tTregs showed an increased response of IFN‐γ‐secreting CD4+ T cells that was strictly reliant on a functional CD27/CD70 pathway. In vitro studies revealed that tTregs downregulate CD70 from the plasma membrane of dendritic cells (DCs) in a CD27‐dependent manner. CD70 downregulation required contact between Tregs and DCs and resulted in endocytosis of CD27 and CD70 into the DC. These findings reveal a novel mechanism by which tTregs can maintain tolerance or prevent excessive, proinflammatory Th1 responses.  相似文献   

14.
Treg细胞具有维持自身免疫耐受,调节免疫应答的作用。Toll样受体(Toll-like receptors,TLRs)家族可识别病原相关分子模式或内源性配体,启动固有和适应性免疫应答。Treg细胞选择性表达某些TLRs,TLRs活化可能直接增强或降低Treg的免疫抑制功能,这种调节可以影响对感染和肿瘤的免疫监视、移植免疫排斥和自身免疫病发生的进程。因此,了解两者的关系对发现新的治疗靶点和对策有重要的作用。简要综述TLRs对Treg细胞抑制功能直接调节作用的研究进展。  相似文献   

15.
It is acknowledged that T cell interactions with mature dendritic cells (DC) lead to immunity, whereas interactions with immature DC lead to tolerance induction. Using a transgenic murine system, we have examined how DC expressing self-peptides control naive, self-reactive CD8+ T cell responses in vitro and in vivo. We have shown, for the first time, that immature DC can also stimulate productive activation of naive self-specific CD8+ T cells, which results in extensive proliferation, the expression of a highly activated cell surface phenotype, and differentiation into autoimmune CTL. Conversely, mature DC can induce abortive activation of naive CD8+ T cells, which is characterized by low-level proliferation, the expression of a partially activated cell surface phenotype which does not result in autoimmune CTL. Critically, both CD8+ T cell responses are determined by a combination of signals mediated by the DC, and that altering any one of these signals dramatically shifts the balance between autoimmunity and self-tolerance induction. We hypothesize that DC maintain the steady state of self-tolerance among self-specific CD8+ T cells in an active and dynamic manner, licensing productive immune responses against self-tissues only when required.  相似文献   

16.
Dendritic cells, the most powerful antigen-presenting cells, are important for triggering of the immune responses to allo-antigens. However, they also play a fundamental role in the peripheral tolerance maintenance. Tolerance is enhanced by the presence on the dendritic cell surface of the inhibitor receptors ILT3 and ILT4. They recruit protein tyrosine-phosphatases to their ITIM domains and inhibit antigen-presenting cell activation, leading T cell hypo-responsivensess. Moreover, these receptors favor a bidirectional interaction with T-suppressor and T-regulator cells, generating an antigen-specific immunoregulator cascade, in which the dendritic cell behaves as a tolerogenic cell. In the current review, analysis is centered on the biology and behavior of the tolerogenic dendritic cells that express high levels of ILT3 and ILT4. Some molecular and genetics aspects of these receptors are discussed as well as their importance in the modulation of the allo-specific antigen immune response to transplants.  相似文献   

17.
Chen L  Qiu M  He W  Huang A  Liu J 《Molecular biology reports》2012,39(6):6633-6639
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previous studies suggest that immature dendritic cells (imDCs) might be involved in the induction of peripheral T cell tolerance. While interleukin-10 (IL-10) functions at different levels of the immune response, transforming growth factor-beta 1 (TGF-beta 1) is considered to be a key factor in immune tolerance. In this study, we investigated the effects of immature DC (imDC) co-transfected with IL-10 and TGF-beta 1 genes (IL-10-TGF-beta 1-imDC) on inducing immune tolerance. Moreover, we compared the effects of IL-10-TGF-beta 1-imDC with IL-10 transfected imDC (IL-10-imDC) and TGF-beta 1-transfected imDC (TGF-beta 1-imDC), respectively. IL-10-TGF-beta 1-imDC resulted in the down-regulation of MHC class II, CD80 and CD86. IL-10-TGF-beta 1-imDC could induce T cell hyporesponsiveness, and was reluctant to proliferate. IL-10-TGF-beta 1-imDC was more effective than IL-10-imDC and TGF-beta 1-imDC, respectively. In summary, co-expression of IL-10 and TGF-beta 1 affected the immunity of imDCs and enhanced their tolerogenicity. It might be a promising therapy for donor-specific tolerance after organ transplantation.  相似文献   

18.
19.
20.
Antigen traffic pathways in dendritic cells   总被引:3,自引:1,他引:2  
Dendritic cells (DC) are now believed to be the principal initiators of T cell-mediated immune responses. Their location in body tissues, migratory behaviour in response to inflammatory stimuli, endocytic properties, expression of MHC molecules and key T cell stimulatory molecules and many other attributes place these remarkable cells in a unique and influential position in the immune system. Progress in DC culture methods has recently allowed in-depth studies on the cell biological features that enable them to fulfil their crucial role in the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号