首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Arsenite and cadmium are two potent nephrotoxicants and common Superfund site elements. These elements are included among the stress protein inducers, but information regarding relationships between toxicity produced by combinations of these agents to the stress protein response is lacking. In this study, the immortalized cell lines normal rat kidney NRK-52E and human kidney HK-2 were exposed in vitro to arsenite (As(3+)), cadmium (Cd(2+)), or to equimolar As(3+) plus Cd(2+) mixture combinations for 3 and 5 h over a concentration range of 0.1-100 microM. After a 12-h recovery period, cultured cells were then evaluated for expression of the 60, 70, and 90 kDa major stress protein families. Results indicated that expression of stress proteins varied depending on the species of kidney cells exposed, the exposure concentrations, and the length of exposure to each element on an individual basis and for combined mixtures. For the HK-2 kidney cell line, increased levels of the 70 kDa stress protein was observed for single and combined element exposures whereas there was no change or a decrease of stress proteins 60 and 90 kDa. Increased 70 kDa expression was observed for 10-microM doses of single elements and for a lower dose of 1 microM of the As plus Cd mixture at 3- and 5-h exposures. NRK-52 kidney cells exposed to equivalent doses of As(3+) and Cd(2+) alone or in combination showed increased levels of all stress proteins 60, 70, and 90 kDa. This increase was seen for 10 microM of the As plus Cd mixture at 3 h whereas for single element exposures, increased stress protein levels were generally observed for the 100-microM doses. At 5 h- exposure, 60 and 90 kDa levels increased for 10 microM of Cd(2+) and 60 kDa levels increased for 1 microM of As(3+). However, exposures to 10 microM of the As plus Cd mixture decreased 60 kDa protein expression to control levels at 5 h. For both kidney cell lines, there was a decrease in the stress protein expression levels for all three stress protein families for 100-microM doses of the mixture combination for 3- and 5-h exposures. These data indicate a dose- and combination-related correlation between depression of the stress protein response and the onset of overt cellular toxicity and/or cell death. The threshold for these changes was cell line specific.  相似文献   

4.
CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd(2+), was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd(2+) tolerance of these cells. Yeast cells expressing the non-functional mutant Asp(398)Ala could grow on selective medium containing up to 100 microM Cd(2+), whereas those expressing the functional protein could not grow in the presence of 1 microM Cd(2+). The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd(2+) accumulation in the reticulum lumen. CadA is also known to transport Zn(2+), but Zn(2+) did not protect the cells against Cd(2+) poisoning. In the presence of 10 microM Cd(2+), transformed yeasts survived by rapid loss of their expression vector.  相似文献   

5.
The specific uptake of 0.3 microM (109)Cd by the TC7 clone of the human enterocytic-like Caco-2 cells increased 4-fold as the pH(out) was lowered from 7.5 to 5.5; the stimulatory effect of acidic media being more pronounced when the level of the free ion (109)Cd(2+), relative to total (109)Cd, was increased. The initial uptake rate was 12-fold higher under conditions, optimizing (109)Cd(2+) accumulation over that of (109)CdCl(2-n)(n) (NO(-)(3)/pH(out) 5.5); a saturable system of transport has been characterized (K(m) = 1.1 +/- 0.1 microM, V(max) = 87 +/- 3 pmol/3 min/mg protein). An excess of Fe(2+) failed to affect (109)Cd uptake when the pH(out) was 7.4, whereas a strong inhibition was observed under NO(-)(3)/pH(out) 5.5 conditions. In contrast, the maximal inhibitory effect of Zn(2+) was observed under Cl(-)/pH(out) 7.4 conditions. This results strongly suggest that Fe(2+) may compete with Cd(2+) for Nramp2, whereas Zn and CdCl(2-n)(n) compete for another system of transport that has yet to be identified.  相似文献   

6.
Exposure of the brain to cadmium ions (Cd(2+)) is believed to lead to neurological disorders of the central nervous system (CNS). In this study, we tested the hypothesis that astrocytes, the major CNS-supporting cells, are resistant to Cd(2+)-induced injury compared with cortical neurons and microglia (CNS macrophages). However, treatment with CdCl(2) for 24 h at concentrations higher than 20 microM substantially induced astrocytic cytotoxicity, which also resulted from long-term exposure to 5 microM of CdCl(2). Intracellular calcium levels were found to rapidly increase after the addition of CdCl(2) into astrocytes, which led to a rise in reactive oxygen species (ROS) and to mitochondrial impairment. In accordance, preexposure to the extracellular calcium chelator EGTA effectively reduced ROS production and increased survival of Cd(2+)-treated astrocytes. Adenovirus-mediated transfer of superoxide dismutase (SOD) or glutathione peroxidase (GPx) genes increased survival of Cd(2+)-exposed astrocytes. In addition, increased ROS generation and astrocytic cell death due to Cd(2+) exposure was inhibited when astrocytes were treated with the polyphenolic compound ellagic acid (EA). Taken together, Cd(2+)-induced astrocytic cell death resulted from disrupted calcium homeostasis and an increase in ROS. Moreover, our findings demonstrate that enhancement of the activity of intracellular antioxidant enzymes and supplementation with a phenolic compound, a natural antioxidant, improves survival of Cd(2+)-primed astrocytes. This information provides a useful approach for treating Cd(2+)-induced CNS neurological disorders.  相似文献   

7.
Pre-treatment of heterotrophic cultures of Euglena gracilis with 1.5 microM HgCl(2) for at least 60 generations resulted in a cell population that showed both increased resistance to Cd(2+) and ability to accumulate it, when compared to non-Hg(2+)-pretreated Euglena. These Hg(2+)-enhanced capacities were evident in cells cultured in the dark in a medium with lactate, but not in cells cultured with glutamate plus malate. After culturing with 0.1 mM CdCl(2) through three consecutive transfers, the mercury-pretreated cells still grew and maintained high levels of glutathione-related metabolites, while the non-Hg(2+)-pretreated cells died. Cultures of Hg(2+)-pretreated cells, after transfer to media with or without cadmium, did not alter either their enhanced Cd(2+) accumulation or their increased production of glutathione-related metabolites. These observations suggested that the Hg(2+)-pretreated population underwent a permanent change that improved its Cd(2+) resistance. Several factors that contributed to the improved capacities included: (a) higher cellular malate, cysteine and glutathione levels induced by Hg(2+) before and after Cd(2+) exposure; and (b) increased storage of Cd(2+) in mitochondria along with increased intramitochondrial citrate, cysteine, and glutathione levels. These characteristics suggested that this Cd(2+) hyper-accumulating strain of E. gracilis might be a suitable candidate for Cd(2+)-bioremediation of polluted water systems.  相似文献   

8.
Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.  相似文献   

9.
* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (相似文献   

10.
Exposure of healthy wheat seeds (Triticum aestivum var Sonalika) to mild dose of cadmium (Cd(2+)) given as 50 microM CdCl(2) for 48 h and then washed off Cd(2+) offered resistance to the subsequent infection by Fusarium oxysporum inoculum. Seven days old seedlings having two primary leaves were aseptically inoculated with fungus, F. oxysporum (1 x 10(6)) spores. The seedlings pre-exposed to low level of Cd(2+) survived the Fusarium infection, while plantlets without Cd(2+) stress wilted and then perished due to Fusarium infection. The stress associated proteins induced by Cd(2+) (50 microM), F. oxysporum and by the co-stress (50 microM Cd(2+) and then with F. oxysporum) treatments were observed to be of same molecular weight (51 kDa). Antibody was raised against the purified Cd(2+)-stress associated protein (CSAP). Immuno-gold labeling of wheat seedling root tissue showed the presence of this CSAP in Cd(2+) pre-exposed and in co-stressed tissues and to be located predominantly on the inner linings of the cell membranes. We also observed that the anti-CSAP-antibody also labeled the root tissue of only Fusarium inoculated seedlings and the gold labeling was intensely located on the membrane. This cross-reaction of anti-CSAP suggests that Fusarium-induced stress protein (FISP) possibly has close homology to CSAP. We thus show for the first time the over expression of a high molecular mass protein by mild dose of Cd(2+) pre-exposure to wheat seeds which subsequently provided protection against Fusarium infection. This mode of resistance developed by an abiotic stress-causing agent against pathogen infection is novel.  相似文献   

11.
Tumbleweed (Salsola kali) is a desert plant species that has shown to be a potential Cd hyperaccumulator. In this study, the production of low-molecular weight thiols (LMWT) as a response to cadmium stress was determined in hydroponically grown seedlings exposed to 0, 45, 89, and 178 microM Cd(2+). The treatment of 89 microM Cd(2+) was tested alone and supplemented with an equimolar concentration of ethylenediaminetetraacetic acid (EDTA) to determine the effect of this chelating agent on Cd uptake and thiols production. After 6 days of growth, the Cd concentration in plant tissues was determined by using inductively coupled plasma/optical emission spectroscopy (ICP/OES). Results indicated that Cd uptake by plants was concentration-dependent. Plants treated with 178 microM Cd(2+), had 10+/-0.62, 9.7+/-1.4, and 4.3+/-0.83 mmol Cd kg(-1) dry tissue in roots, stems, and leaves, respectively. The production of thiols was dependent on Cd concentration in tissues. According to the stoichiometry performed, plants treated with Cd concentrations up to 178 muM produced 0.131+/-0.02, and 0.087+/-0.012 mmol SH per mmol Cd present in roots and stems. In leaves, the production of thiols decreased at the highest Cd concentration tested. Thus, up to 89 microM Cd in the media, 0.528+/-0.004 mmol SH per mmol Cd in leaf tissues were produced. EDTA equimolar to Cd reduced both Cd uptake and thiols production. Catalase activity (CAT) (EC 1.11.1.6) was significantly depressed at the lowest Cd concentration. None of the conditions tested affected biomass or plant elongation.  相似文献   

12.
The effect of gossypol on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Gossypol evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 2 and 20 microM. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with gossypol nearly abolished the [Ca(2+)](i) increase induced by carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, and thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with CCCP and thapsigargin only partly inhibited gossypol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 5 microM gossypol in Ca(2+)-free medium. This Ca(2+) entry was decreased by 25 microM econazole, 50 microM SKF96365 and 40 microM aristolochic acid (a phospholipase A(2) inhibitor). Pretreatment with aristolochic acid inhibited 5 microM gossypol-induced internal Ca(2+) release by 55%, but suppression of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) had no effect. Gossypol (5 microM) also increased [Ca(2+)](i) in human bladder cancer cells and neutrophils. Collectively, we have found that gossypol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from external space.  相似文献   

13.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

14.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

15.
The physiological impact of Cd(2+) on Sinopotamon yangtsekiense was evaluated through changes of selected parameters considered as key elements of carbohydrate and protein metabolisms. Crab were exposed to 0.725, 1.45, 2.9mg·L(-1) Cd(2+) for 7, 14 and 21 days. A time- and/or concentration- dependent decrease in muscle glycogen and increase in LDH activity suggested that glycolysis was accelerated during the treatments. Increased protease activity, lowering of FAA and the initially increased and subsequently decreased aminotransferase activities suggest an enhanced protein mobilization during early Cd(2+) exposure followed by a metabolic impairment during late exposure. Decreased hemolymph glucose level was observed in the crabs treated with 2.9mg·L(-1) Cd(2+) for 21d, suggesting an impaired gluconeogenesis. Ammonia level barely changed during the 14d Cd(2+) exposure most likely due to the increased urea and glutamine production; After 1.45 and 2.9mg·L(-1) Cd(2+) treatment for 21d, ammonia was observed increased followed by an exclusive increase in glutamine. Taken together, our results indicate that carbohydrate and protein are mobilized to a varying degree as a compensatory metabolism to response to the energy stress during acute Cd(2+) exposure. As the time lapsed, some symptoms on metabolism obstacle reflect the toxic effect of sublethal Cd(2+).  相似文献   

16.
Cadmium (Cd), similarly to other heavy metals, inhibits plant growth. We have recently showed that Cd(2+) either stimulates (1-4 microM) or inhibits (>/= 6 microM) growth of soybean (Glycine max L.) cells in suspension culture (Sobkowiak & Deckert, 2003, Plant Physiol Biochem. 41: 767-72). Here, soybean cell suspension cultures were treated with various concentrations of Cd(2+) (1-10 microM) and the following enzymes were analyzed by native electrophoresis: superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APOX). We found a significant correlation between the cadmium-induced changes of soybean cell culture growth and the isoenzyme pattern of the antioxidant enzymes. The results suggest that inhibition of growth and modification of antioxidant defense reactions appear in soybean cells when Cd(2+) concentration in culture medium increases only slightly, from 4 to 6 microM.  相似文献   

17.
Regulation of swelling-activated Cl(-) current (I(Cl,swell)) is complex, and multiple signaling cascades are implicated. To determine whether protein tyrosine kinase (PTK) modulates I(Cl,swell) and to identify the PTK involved, we studied the effects of a broad-spectrum PTK inhibitor (genistein), selective inhibitors of Src (PP2, a pyrazolopyrimidine) and epidermal growth factor receptor (EGFR) kinase (PD-153035), and a protein tyrosine phosphatase (PTP) inhibitor (orthovanadate). I(Cl,swell) evoked by hyposmotic swelling was increased 181 +/- 17% by 100 microM genistein, and the genistein-induced current was blocked by the selective I(Cl,swell) blocker tamoxifen (10 microM). Block of Src with PP2 (10 microM) stimulated tamoxifen-sensitive I(Cl,swell) by 234 +/- 27%, mimicking genistein, whereas the inactive analog of PP2, PP3 (10 microM), had no effect. Moreover, block of PTP by orthovanadate (1 mM) inhibited I(Cl,swell) and prevented its stimulation by PP2. In contrast with block of Src, block of EGFR kinase with PD-153035 (20 nM) inhibited I(Cl,swell). Several lines of evidence argue that the PP2-stimulated current was I(Cl,swell): 1) the stimulation was volume dependent, 2) the current was blocked by tamoxifen, 3) the current outwardly rectified with both symmetrical and physiological Cl(-) gradients, and 4) the current reversed near the Cl(-) equilibrium potential. To rule out contributions of other currents, Cd(2+) (0.2 mM) and Ba(2+) (1 mM) were added to the bath. Surprisingly, Cd(2+) suppressed the decay of I(Cl,swell), and Cd(2+) plus Ba(2+) eliminated time-dependent currents between -100 and +100 mV. Nevertheless, these divalent ions did not eliminate I(Cl,swell) or prevent its stimulation by PP2. The results indicate that tyrosine phosphorylation controls I(Cl,swell), and regulation of I(Cl,swell) by the Src and EGFR kinase families of PTK is antagonistic.  相似文献   

18.
Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.  相似文献   

19.
Calpains are cytoplasmic Ca(2+)-regulated cysteine proteases that may regulate insulin-like growth factor (IGF)-independent actions of insulin-like growth factor binding proteins (IGFBPs) through IGFBP proteolysis. In this study, [(125)I]-labeled IGFBP-2 and -3, but not IGFBP-1, were proteolyzed by Ca(2+)-activated m-calpain in vitro. Degradation of higher concentrations of the recombinant proteins IGFBP-2 and -3 by m-calpain was dose-dependent, but was terminated within 20 min by autolysis. By subjecting proteolytic fragments to N-terminal amino acid sequence analysis, the primary cleavage sites in IGFBP-2 and -3 were localized to the non-conserved central linker regions. Using the biosensor technique, in vitro binding of m-calpain to IGFBP-3 was demonstrated to be a Ca(2+)-dependent reaction with a rapid on/off rate.  相似文献   

20.
In order to investigate the role of phytochelatins in short-time uptake of Cd(2+) into the cytosol of wheat protoplasts, a new method was applied, using fluorescence microscopy and the heavy metal-specific fluorescent dye, 5-nitrobenzothiazole coumarin, BTC-5N. The uptake of Cd(2+) into protoplasts from 5- to 7-day-old wheat seedlings (Triticum aestivum, L. cv. Kadett) was lower in protoplasts from seedlings raised in the presence of 1 microM CdCl(2), than in the absence. Presence of CdCl(2) in the cultivation medium increased the content of phytochelatins (PCs) in the protoplasts. When seedlings were raised in the presence of both Cd(2+) and buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, only little PC was found in the protoplasts. Pre-treatment with BSO alone did not affect the content of PC, but inhibited that of GSH. The inhibition of GSH was independent of pre-treatment with Cd(2+). Unidirectional flux analyses, using (109)Cd(2+), showed approximately the same uptake pattern of Cd(2+) as did the fluorescence experiments showing the cytosolic uptake of Cd(2+). Thus, the diminished uptake of Cd(2+) into protoplasts from cadmium-pre-treated plants was not depending on PCs. Instead, it is likely that pre-treatment with Cd(2+) causes a down-regulation of the short-term Cd(2+) uptake, or an up-regulation of the Cd(2+) extrusion. Moreover, since addition of Cd(2+) to protoplasts from control plants caused a cytosol acidification, it is likely that a Cd(2+/)H(+)-antiport mechanism is involved in the extrusion of Cd(2+) from these protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号