首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endophilin and Sorting Nexin 9 (Snx9) play key roles in endocytosis by membrane curvature sensing and remodeling via their Bin/Amphiphysin/Rvs (BAR) domains. BAR and the related F-BAR domains form dimeric, crescent-shaped units that occur N- or C-terminally to other lipid-binding, adaptor, or catalytic modules. In crystal structures, the PX-BAR unit of Snx9 (Snx9(PX-BAR)) adopts an overall compact, moderately curved conformation. SAXS-based solution studies revealed an alternative, more curved state of Snx9(PX-BAR) in which the PX domains are flexibly connected to the BAR domains, providing a model for how Snx9 exhibits lipid-dependent curvature preferences. In contrast, Endophilin appears to be rigid in solution, and the SH3 domains are located at the distal tips of a BAR domain dimer with fixed curvature. We also observed tip-to-tip interactions between the BAR domains in a trigonal crystal form of Snx9(PX-BAR) reminiscent of functionally important interactions described for F-BAR domains.  相似文献   

2.
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.  相似文献   

3.
The crescent-shaped BAR (Bin/Amphiphysin/Rvs-homology) domain dimer is a versatile protein module that senses and generates positive membrane curvature. The BAR domain dimer of human endophilin-A1, solved at 3.1 A, has a unique structure consisting of a pair of helix-loop appendages sprouting out from the crescent. The appendage's short helices form a hydrophobic ridge, which runs across the concave surface at its center. Examining liposome binding and tubulation in vitro using purified BAR domain and its mutants indicated that the ridge penetrates into the membrane bilayer and enhances liposome tubulation. BAR domain-expressing cells exhibited marked plasma membrane tubulation in vivo. Furthermore, a swinging-arm mutant lost liposome tubulation activity yet retaining liposome binding. These data suggested that the rigid crescent dimer shape is crucial for the tubulation. We here propose that the BAR domain drives membrane curvature by coordinate action of the crescent's scaffold mechanism and the ridge's membrane insertion in addition to membrane binding via amino-terminal amphipathic helix.  相似文献   

4.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   

5.
Eukaryotic cells are defined by extensive intracellular compartmentalization, which requires dynamic membrane remodeling. FER/Cip4 homology-Bin/amphiphysin/Rvs (F-BAR) domain family proteins form crescent-shaped dimers, which can bend membranes into buds and tubules of defined geometry and lipid composition. However, these proteins exhibit an unexplained wide diversity of membrane-deforming activities in vitro and functions in vivo. We find that the F-BAR domain of the neuronal protein Nervous Wreck (Nwk) has a novel higher-order structure and membrane-deforming activity that distinguishes it from previously described F-BAR proteins. The Nwk F-BAR domain assembles into zigzags, creating ridges and periodic scallops on membranes in vitro. This activity depends on structural determinants at the tips of the F-BAR dimer and on electrostatic interactions of the membrane with the F-BAR concave surface. In cells, Nwk-induced scallops can be extended by cytoskeletal forces to produce protrusions at the plasma membrane. Our results define a new F-BAR membrane-deforming activity and illustrate a molecular mechanism by which positively curved F-BAR domains can produce a variety of membrane curvatures. These findings expand the repertoire of F-BAR domain mediated membrane deformation and suggest that unique modes of higher-order assembly can define how these proteins sculpt the membrane.  相似文献   

6.
Frolov VA  Zimmerberg J 《Cell》2008,132(5):727-729
Crescent-shaped BAR domains are generic actors in the creation of membrane curvature. In this issue, Frost et al. (2008) reveal how collective twisting of rigid F-BAR domains on a soft membrane surface may lead to different membrane curvatures.  相似文献   

7.
Mechanism of endophilin N-BAR domain-mediated membrane curvature   总被引:1,自引:0,他引:1  
Endophilin-A1 is a BAR domain-containing protein enriched at synapses and is implicated in synaptic vesicle endocytosis. It binds to dynamin and synaptojanin via a C-terminal SH3 domain. We examine the mechanism by which the BAR domain and an N-terminal amphipathic helix, which folds upon membrane binding, work as a functional unit (the N-BAR domain) to promote dimerisation and membrane curvature generation. By electron paramagnetic resonance spectroscopy, we show that this amphipathic helix is peripherally bound in the plane of the membrane, with the midpoint of insertion aligned with the phosphate level of headgroups. This places the helix in an optimal position to effect membrane curvature generation. We solved the crystal structure of rat endophilin-A1 BAR domain and examined a distinctive insert protruding from the membrane interaction face. This insert is predicted to form an additional amphipathic helix and is important for curvature generation. Its presence defines an endophilin/nadrin subclass of BAR domains. We propose that N-BAR domains function as low-affinity dimers regulating binding partner recruitment to areas of high membrane curvature.  相似文献   

8.
Membrane dynamics is an essential process for cell locomotion, cytokinesis, vesicular transport and organelle morphogenesis. Formation of tubes or buds from a nearly flat membrane is a widely spread feature of the membrane shape changes. The BAR (Bin/Amphiphysin/Rvs-homology) domain dimers exhibit long extended curved shapes and appear to be outstandingly suitable modules for this purpose. So far, crystal structures of 18 independent BAR domains including inverse-BAR domains and FCH-BAR domains have been reported. These atomic models show a vast variation of dimer shapes on a common and simple basic framework. Comparison of the structural variations with respect to differences in membrane sculpting properties provide useful clues about the mechanisms for modifying the framework into a particular dimer that generates and/or senses a distinct curvature set of the membrane.  相似文献   

9.
Endophilin has been implicated in the retrieval of membrane via endocytosis of clathrin-coated vesicles, which is crucial for the maintenance of neurotransmitter exocytosis during stimulation; both exocytosis and endocytosis are regulated by intracellular calcium levels. Here, we present the 2.3 A crystal structure of the endophilin-A1 BAR domain, which has been suggested to function in inducing and sensing membrane curvature at the site of endocytosis. Endo-BAR folds into a crescent-shaped dimer composed of two elongated, three-helix bundles. Two additional domains of 30 residues each, inserted into helix 1 at the center of the concave side of the dimer, may interfere with the proposed mode of BAR domain membrane interaction. In addition, the dimer binds 11 divalent cadmium ions in the crystal mostly with typical Ca2+ co-ordination spheres. The endophilin-1A BAR domain thus constitutes a new variant of a BAR domain, and it may link endophilin-1A BAR function to calcium regulation of endocytosis.  相似文献   

10.
Structural basis of membrane invagination by F-BAR domains   总被引:1,自引:0,他引:1  
BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.  相似文献   

11.
The protein kinase C and casein kinase 2 substrates in neurons (PACSINs) represent a subfamily of membrane-binding proteins characterized by an amino-terminal Bin-Amphiphysin-Rvs (F-BAR) domain. PACSINs link membrane trafficking with actin dynamics and regulate the localization of distinct cargo molecules. The F-BAR domain forms a dimer essential for lipid binding. We have obtained crystals of authentic murine PACSIN 2 that contain an ordered F-BAR domain, indicating that additional domains are flexibly connected to F-BAR. The structure shares similarity to other BAR domains and exhibits special features unique to PACSINs. These include the uneven distribution of charged residues on the concave molecular surface and a so-called wedge loop that is driven into the membrane upon binding of PACSIN. The murine PACSIN 2 F-BAR domain requires dimerization for sensing of curved membranes, and the present structure also provides a mechanism for higher-order oligomer formation. Importantly, comparison of murine with human and Drosophila PACSIN 2 F-BAR domains reveals stark differences in the orientation of distal helical segments leading to a wider crescent shape of murine PACSIN 2. We define hinge residues for these movements that may help PACSINs sense and concomitantly reinforce membrane curvature.  相似文献   

12.
BAR and ENTH domains are families of alpha-helical lipid bilayer binding modules found in proteins that function in endocytosis, actin regulation and signaling. Several members of these families not only bind the bilayer, but also participate in the regulation of its curvature. These properties are thought to play physiological roles at sites of membrane budding and at other sites where narrow tubular membranes occur in vivo. Studies of BAR and ENTH domains and of their flanking regions have provided new insights into mechanisms of membrane deformation and curvature sensing, and have emphasized the importance of amphipathic helices, thought to intercalate in one of the leaflets of the lipid bilayer, in the generation of membrane curvature. Structural studies and database searches are rapidly expanding the BAR and ENTH domains families, with the identification of new related domains and subfamilies, such as F-BAR (also called EFC) domains and ANTH domains, respectively. Here we present a short overview of the properties of these domains based on evidence obtained from genetics, cell biology, biochemistry and structural biology.  相似文献   

13.
The Bin-Amphiphysin-Rvs (BAR) domain family of proteins includes groups which promote positive (classical BAR, N-BAR, and F-BAR) and negative (I-BAR) membrane deformation. Of these groups, the F-BAR subfamily is the most diverse in its biochemical properties. F-BAR domain proteins dimerize to form a tight scaffold about the membrane. The F-BAR domain provides a banana-shaped, alpha-helical structure that senses membrane curvature. Different types of F-BAR domain proteins contain tyrosine kinase or GTPase activities; some interact with phosphatases and RhoGTPases. Most possess an SH3 domain that facilitates the recruitment and activation of WASP/N-WASP. Thus, F-BAR domain proteins affect remodeling of both membrane and the actin cytoskeleton. The purpose of this review is to highlight the role of F-BAR proteins in coupling WASP/N-WASP to cytoskeletal remodeling. A role for F-BAR/WASP interaction in human diseases affecting nervous, blood, and neoplastic tissues is discussed.  相似文献   

14.
Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.  相似文献   

15.
Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are essential players in the dynamics of intracellular compartments. The BAR domain is an evolutionarily conserved dimeric module characterized by a crescent-shaped structure whose intrinsic curvature, flexibility, and ability to assemble into highly ordered oligomers contribute to inducing the curvature of target membranes. Endophilins, diverging into A and B subgroups, are BAR and SH3 domain-containing proteins. They exert activities in membrane dynamic processes such as endocytosis, autophagy, mitochondrial dynamics, and permeabilization during apoptosis. Here, we report on the involvement of the third α-helix of the endophilin A BAR sequence in dimerization and identify leucine 215 as a key residue within a network of hydrophobic interactions stabilizing the entire BAR dimer interface. With the combination of N-terminal truncation retaining the high dimerization capacity of the third α-helices of endophilin A and leucine 215 substitution by aspartate (L215D), we demonstrate the essential role of BAR sequence-mediated dimerization on SH3 domain partnership. In comparison with wild type, full-length endophilin A2 heterodimers with one protomer bearing the L215D substitution exhibit very significant changes in membrane binding and shaping activities as well as a dramatic decrease of SH3 domain partnership. This suggests that subtle changes in the conformation and/or rigidity of the BAR domain impact both the control of membrane curvature and downstream binding to effectors. Finally, we show that expression, in mammalian cells, of endophilin A2 bearing the L215D substitution impairs the endocytic recycling of transferrin receptors.  相似文献   

16.
Structural basis for the actin-binding function of missing-in-metastasis   总被引:1,自引:0,他引:1  
The adaptor protein missing-in-metastasis (MIM) contains independent F- and G-actin binding domains, consisting, respectively, of an N-terminal 250 aa IRSp53/MIM homology domain (IMD) and a C-terminal WASP-homology domain 2 (WH2). We determined the crystal structures of MIM's IMD and that of its WH2 bound to actin. The IMD forms a dimer, with each subunit folded as an antiparallel three-helix bundle. This fold is related to that of the BAR domain. Like the BAR domain, the IMD has been implicated in membrane binding. Yet, comparison of the structures reveals that the membrane binding surfaces of the two domains have opposite curvatures, which may determine the type of curvature of the interacting membrane. The WH2 of MIM is longer than the prototypical WH2, interacting with all four subdomains of actin. We characterize a similar WH2 at the C terminus of IRSp53 and propose that in these two proteins WH2 performs a scaffolding function.  相似文献   

17.
Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63–86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63–75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic α-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain.  相似文献   

18.
BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.  相似文献   

19.
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.  相似文献   

20.
BAR (Bin/amphiphysin/Rvs) domain-containing proteins participate in cellular membrane remodeling. The F-BAR proteins normally generate low curvature tubules. However, in the PACSIN subfamily, the F-BAR domain from PACSIN 1 and 2 can induce both high and low curvature tubules. We found that unlike PACSIN 1 and 2, PACSIN 3 could only induce low curvature tubules. To elucidate the key factors that dictate the tubule curvature, crystal structures of all three PACSIN F-BAR domains were determined. A novel type of lateral interaction mediated by a wedge loop is observed between the F-BAR neighboring dimers. Comparisons of the structures of PACSIN 3 with PACSIN 1 and 2 indicate that the wedge loop of PACSIN 3 is more rigid, which influences the lateral interactions between assembled dimers. We further identified the residues that affect the rigidity of the loop by mutagenesis and determined the structures of two PACSIN 3 wedge loop mutants. Our results suggest that the rigidity-mediated conformations of the wedge loop correlate well with the various crystal packing modes and membrane tubulations. Thus, the rigidity of the wedge loop is a key factor in dictating tubule diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号