首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ methane enrichment in anaerobic digestion of sewage sludge has been investigated by experiments and by modeling. In this first part, the experimental work on the desorption of carbon dioxide and methane from sewage sludge is reported. The bubble column, had a diameter of 0.3 m and a variable height up to 1.8 m. At operation the dispersion height in the column was between 1 and 1.3 m. Outdoor air was used. The column was placed close to a full-scale sewage sludge digester, at a municipal wastewater treatment plant. The digester was operated at mesophilic conditions with a hydraulic retention time of about 20 days. The bubble column was operated to steady-state, at which carbon dioxide concentration and alkalinity were determined on the liquid side, and the concentration of carbon dioxide and methane on the gas side. Thirty-eight experiments were performed at various liquid and gas flow rates. The experimental results show that the desorption rates achieved for carbon dioxide ranges from 0.07 to 0.25 m(3) CO(2)/m(3) sludge per day, which is comparable to the rate of generation by the anaerobic digestion. With increasing liquid flow rate and decreasing gas flow rate the amount of methane desorbed per amount of carbon dioxide desorbed increases. The lowest methane loss achieved is approximately 2% of the estimated methane production in the digestion process.  相似文献   

2.
舍饲绵羊甲烷和二氧化碳的日排放动态   总被引:6,自引:0,他引:6  
运用密闭呼吸代谢箱系统,对3只舍饲绵羊24h(有间断)甲烷(CH4)和二氧化碳(CO2)日排放特征进行了研究.供试3只甘肃细毛羊体况相近(平均体重为(25±5)kg),其基础日粮为燕麦干草和玉米精料,粗精比为 6∶4.结果表明:供试绵羊CH4和CO2的平均排放量分别为11g/d和147 g/d,CH4排放的峰值分别出现在17:00和22:00左右,达0.4217g/h和0.8082 g/h,直到0:00降至最小为0.2993g/h;之后趋于平稳,次日8:00左右再次达到排放高峰,排放量为0.6587 g/h.而CO2在各个测定时间段内差异不显著(p>0.05).因此,舍饲条件下绵羊CH4和CO2排放量动态(g/min)变化不同步.由此,推算出舍饲绵羊(25±5)kg年排放CH4和CO2总量分别约为4.38 kg和53.66 kg.  相似文献   

3.
二氧化碳减量化与转化是当前业界关注及着手解决的重要问题,将二氧化碳作为资源转化为甲烷,有利于环境与社会的可持续发展。本文在分析二氧化碳转化为甲烷技术的基础上,重点介绍了国内外二氧化碳生物转化的研究与进展;总结了二氧化碳生物转化途径及其影响因素,分析了氢营养型、甲基营养型生物转化甲烷机理和生物转化能量来源;探讨了不同产甲烷菌微生物电合成产甲烷和氢气研究进展,总结了微生物电合成法、光合作用法和厌氧消化法等二氧化碳生物转化技术在反应器设计、电极材料选择、工艺条件优化及试验结果评估等方面取得的进展及存在的问题。重点就微生物电合成法的未来研究提出了增强微生物活性、提升氢气利用率、加快高效电极开发、提高能量效率、加强工业废气试验研究和强化光能转化等研究重点和发展方向,同时加强计算机模拟等交叉学科协同创新是促进二氧化碳生物转化技术进步的新方向。  相似文献   

4.
5.
湿地碳排放及其影响因素   总被引:4,自引:0,他引:4  
湿地生态系统在全球碳循环中起着重要作用.湿地独特的土壤、水文和植被条件,使得其在低氧环境下能不断累积碳,并同时释放大量温室气体——CH4和CO2,因此湿地的碳排放近年来成为全球气候变化研究关注的重点问题.湿地的土壤状况、水文条件及植被类型的不同导致湿地CH4和CO2的排放具有极强的时空变异性.土壤温度与CH4和CO2排放呈正相关关系;水位条件对湿地温室气体的排放有一定影响,在一定范围内,土壤的厌氧环境导致CH4排放量增大,CO2排放量减小;植被影响到温室气体产生、氧化和排放各个方面,因物种而异.  相似文献   

6.
An aerobic methanotrophic-heterotrophic soil community has been characterised when growing with different partial pressures of CO2. The methanotrophic population using methane as carbon source reached 3 × 107 cfu ml–1 with one of the major methanotrophs being of type II which uses the serine pathway for C assimilation. Optimal methanotrophic activity required the addition of CO2, and in the absence of CO2 no methane oxidisers grew. Partial pressures of CO2 from 1.6 to 11.6 kPa gave optimal cell growth and production of soluble organic compounds. Biomass yield, soluble organics and CO2 production were 0.36, 0.15, and 0.48 mg mg–1 methane uptake, respectively, with CO2 at 11.6 kPa. The results presented here may have important implications for the use of methane-oxidising bacteria in bioremedial applications.  相似文献   

7.
Recent anthropogenic emissions of key atmospheric trace gases (e.g. CO2 and CH4) which absorb infra-red radiation may lead to an increase in mean surface temperatures and potential changes in climate. Although sources of each gas have been evaluated independently, little attention has focused on potential interactions between gases which could influence emission rates. In the current experiment, the effect of enhanced CO2 (300 μL L–1 above ambient) and/or air temperature (4 °C above ambient) on methane generation and emission were determined for the irrigated tropical paddy rice system over 3 consecutive field seasons (1995 wet and dry seasons 1996 dry season). For all three seasons, elevated CO2 concentration resulted in a significant increase in dissolved soil methane relative to the ambient control. Consistent with the observed increases in soil methane, measurements of methane flux per unit surface area during the 1995 wet and 1996 dry seasons also showed a significant increase at elevated carbon dioxide concentration relative to the ambient CO2 condition (+49 and 60% for each season, respectively). Growth of rice at both increasing CO2 concentration and air temperature did not result in additional stimulation of either dissolved or emitted methane compared to growth at elevated CO2 alone. The observed increase in methane emissions were associated with a large, consistent, CO2-induced stimulation of root growth. Results from this experiment suggest that as atmospheric CO2 concentration increases, methane emissions from tropical paddy rice could increase above current projections.  相似文献   

8.
Molecular dynamics simulation was performed to analyse the phenomena of replacement of methane hydrate with carbon dioxide (CO2) at 270 K and 5.0 MPa for 5300 ps. The methane hydrate phase was constructed with 16 unit cells of hydrate. Every cage in the hydrate was occupied by one methane molecule. The methane hydrate phase was sandwiched between two CO2 phases. During the simulation the hydrate partially melted and liquid water phase appeared, and CO2 dissolved in the liquid water phase. The replacements were observed three times at the hydrate–liquid water interface during the simulation. In the first case, the replacement occurred at a S-cage without changing the structure. In the second case, an M-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 remained in the M-cage structure. In the third case, a S-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 changed to an M-cage-like structure.  相似文献   

9.
The fluxes of CH4 and CO2 to the atmosphere, and the relative contributions of ebullition and molecular diffusion, were determined for a small hypertrophic freshwater lake (Priest Pot, UK) over the period May to October 1997. The average total flux of CH4 and CO2 (estimated from 7 sites on the lake) was approximately 52 mmol m–2 d–1 and was apportioned 12 and 40 mmol m–2 d–1 toCH4 and CO2 respectively. Diffusion across the air-water interface accounted for the loss of 0.4and 40 mmol m–2 d–1 of CH4 and CO2 respectively whilst the corresponding figures for ebullition losses were 12.0 (CH4) and 0.23 (CO2) mmol m–2 d–1. Most CH4 (96%) was lost by ebullition, and most CO2 (99%) by diffusive processes. The ebullition of gas, measured at weekly intervals along a transect of the lake, showed high spatial and temporal variation. The CH4 content of the trapped gas varied between 44 and 88% (by volume) and was highest at the deepest points. Pulses of gas ebullition were detected during periods of rapidly falling barometric pressure. Therelevance of the measurements to global estimates ofcarbon emission from freshwaters are discussed.  相似文献   

10.
The ability to predict the effects of climate change on trace gas fluxes requires a knowledge of microbial temperature responses. However, the response of a microbial community to temperature in a given substrate may be complicated by its thermal history. To examine the effect of sequentially changing temperature on methane and carbon dioxide production in different peat types, we incubated anaerobic peat samples from 3 types of northern peatlands, a bog, a sedge fen and a cedar swamp, in both rising and falling temperature regimes. Graphic and statistical comparisons of the different temperature regimes suggest hysteresis in microbial response to temperature, although the absolute rates at any given temperature often did not differ. Where regressions for temperature response (Arrhenius plots) were significant, they generally differed between temperature regimes. The greatest differences among treatments occurred during the first half of the 40-d incubation. Increases in carbon dioxide production were similar across all peat types, but methanogenesis varied widely: methane production was uniformly low in the bog peat but increased sharply with temperature in the other two peat types. The complicating effect of history or chronology on substrate responses to environmental stimuli may restrain our ability to model the responses of complex systems to changing conditions.  相似文献   

11.
闽江河口潮汐湿地二氧化碳和甲烷排放化学计量比   总被引:3,自引:0,他引:3  
王维奇  曾从盛  仝川  王纯 《生态学报》2012,32(14):4396-4402
为了阐明河口潮汐湿地碳源温室气体排放的化学计量比特征,对闽江河口潮汐湿地二氧化碳和甲烷排放进行了测定与分析。结果表明:芦苇湿地和短叶茳芏湿地二氧化碳与甲烷排放均呈现正相关;涨潮前、涨落潮过程和落潮后芦苇湿地和短叶茳芏湿地CO2∶CH4月平均值分别为55.4和185.0,96.3和305.5,68.7和648.6,3个过程芦苇湿地和短叶茳芏湿地CO2∶CH4差异均不显著(P>0.05),2种植物湿地CO2∶CH4对潮汐的响应并不一致,但均在涨潮前表现为最低;涨潮前、涨落潮过程和落潮后均表现为芦苇湿地CO2∶CH4低于短叶茳芏湿地(P<0.05);河口潮汐湿地CO2∶CH4为空间变异性>时间变异性,潮汐、植物和温度均对CO2∶CH4的变化具有一定的调节作用。  相似文献   

12.
猪粪与沼气渣对双季稻田甲烷排放的影响   总被引:9,自引:0,他引:9  
随着环境温度的升高,稻田甲烷排放通量增加。早稻期间甲烷排放通量随着水稻生育期的增加而逐步加快,而晚稻甲烷排放主要集中在水稻生长的前中期,而且排放量很高。一天中甲烷排放具有很强的周期性,在6:00~8:00时,甲烷排放通量进入谷底,14:00时甲烷排放通量达到峰值。稻田甲烷排放通量与土壤5cm处的温度及土壤水溶解甲烷含量具有较高的相关性。猪粪和沼气渣的施用分别提高稻田甲烷排放量22.14%和4.40%。在早稻期间,施用猪粪和沼气渣分别提高土壤水溶解甲烷含量40.3%和11.9%,而晚稻期间仅分别提高23.9%和5.04%。  相似文献   

13.
Agriculture has marked impacts on the production of carbon dioxide (CO2) and consumption of methane (CH4) by microbial communities in upland soils—Earth''s largest biological sink for atmospheric CH4. To determine whether the diversity of microbes that catalyze the flux of these greenhouse gases is related to the magnitude and stability of these ecosystem-level processes, we conducted molecular surveys of CH4-oxidizing bacteria (methanotrophs) and total bacterial diversity across a range of land uses and measured the in situ flux of CH4 and CO2 at a site in the upper United States Midwest. Conversion of native lands to row-crop agriculture led to a sevenfold reduction in CH4 consumption and a proportionate decrease in methanotroph diversity. Sites with the greatest stability in CH4 consumption harbored the most methanotroph diversity. In fields abandoned from agriculture, the rate of CH4 consumption increased with time along with the diversity of methanotrophs. Conversely, estimates of total bacterial diversity in soil were not related to the rate or stability of CO2 emission. These combined results are consistent with the expectation that microbial diversity is a better predictor of the magnitude and stability of processes catalyzed by organisms with highly specialized metabolisms, like CH4 oxidation, as compared with processes driven by widely distributed metabolic processes, like CO2 production in heterotrophs. The data also suggest that managing lands to conserve or restore methanotroph diversity could mitigate the atmospheric concentrations of this potent greenhouse gas.  相似文献   

14.
Wen Q  Li C  Cai Z  Zhang W  Gao H  Chen L  Zeng G  Shu X  Zhao Y 《Bioresource technology》2011,102(2):942-947
The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75 °C, which is affordable and economical for recycling.  相似文献   

15.
几种花卉植物对污泥中铅的富集特征   总被引:13,自引:0,他引:13  
土地利用是资源化利用城市污水厂污泥的有效途径。为了解污泥中重金属污染物在土壤、植物之间的迁移富集规律,选用8种园林用植物进行污泥混配土种植实验。结果表明,植物对污泥混配土土壤中铅的富集能力,以及铅在植物中各器官的富集系数均不同,且不同种类植物差别较大。植物根部对铅有较强的富集能力,其次是叶和茎。菊花对铅的富集能力较强。植物对土壤中铅的富集能力也受土壤铅含量和赋存形态影响。  相似文献   

16.
The partial pressures of CO2 (pCO2) andCH4 (pCH4) in streams are not only governed byinstream processes, but also by transformations occurring in soil andgroundwater ecosystems. As such, stream water pCO2 andpCH4 can provide a tool to assess ecosystem respiration andanaerobic metabolism throughout drainage basins. We conducted three surveyssampling the gas content of streams in eastern Tennessee and western NorthCarolina to assess factors regulating ecosystem metabolism in catchmentswith contrasting geomorphologies, elevations and soil organic matterstorage. In our first survey, the influence of drainage basin geomorphologyon ecosystem respiration was examined by sampling streams drainingcatchments underlain by either shale or dolomite. Geomorphology isinfluenced by geology with shale catchments having shallower soils, broader,unconstrained valley floors compared with dolomite catchments.pCO2 varied little between catchment types but increased froman average of 3340 ppmv in spring to 9927 ppmv in summer or 9.3 and 28 timesatmospheric equilibrium (pCO2(equilib)), respectively. Incontrast, pCH4 was over twice as high in streams drainingshale catchments (306 ppmv; pCH4(equilib) = 116) compared withmore steeply incised dolomite basins (130 ppmv; pCH4(equilib)= 51). Using the ratio of pCH4:pCO2 as an indexof anaerobic metabolism, shale catchments had nearly twice as muchanaerobiosis (pCH4:pCO2 = 0.046) than dolomitedrainages (pCH4:pCO2 = 0.024). In our secondsurvey, streams were sampled along an elevational gradient (525 to 1700 m)in the Great Smoky Mountains National Park, USA where soil organic matterstorage increases with elevation. pCO2 did not vary betweenstreams but increased from 5340 ppmv (pCO2(equilib) = 15) to8565 ppmv (pCO2(equilib) = 24) from spring to summer,respectively. During spring pCH4 was low and constant acrossstreams, but during summer increased with elevation ranging from 17 to 2068ppmv (pCH4(equilib) = 10 to 1216). The contribution ofanaerobiosis to total respiration was constant during spring(pCH4:pCO2 = 0.017) but during summer increasedwith elevation from 0.002 at 524 m to 0.289 at 1286 m. In our last survey,we examined how pCO2 and pCH4 changed withcatchment size along two rivers (ca. 60 km stretches in both riverscorresponding to increases in basin size from 1.7–477km2 and 2.5–275 km2). pCO2and pCH4 showed opposite trends, with pCO2decreasing ca. 50% along the rivers, whereas pCH4roughly doubled in concentration downstream. These opposing shifts resultedin a nearly five-fold increase of pCH4:pCO2along the rivers from a low of 0.012 in headwaters to a high of 0.266 65-kmdownstream. pCO2 likely declines moving downstream asgroundwater influences on stream chemistry decreases, whereaspCH4 may increase as the prevalence of anoxia in riversexpands due to finer-grained sediments and reduced hydrologic exchange withoxygenated surface water.  相似文献   

17.
以中国科学院新疆巴音布鲁克草原生态站为依托,于2010年5月—2011年10月利用静态箱-气相色谱法对短期禁牧(2005年围封)、长期禁牧(1984年围封)和自由放牧(冬季放牧)3种草地的CO2、CH4、N2O气体通量进行了野外连续试验研究。结果表明:新疆天山高寒草原对CO2,CH4和N2O通量表现出明显的季节排放特点。在植物的生长季(5—10月),新疆天山高寒短期禁牧、长期禁牧和自由放牧草原的CO2通量平均值分别为:(89.8±49.3)、(52.8±28.7)、(57.0±30.7)mg·m-2·h-1,CH4通量平均值分别为:(-66.3±21.3)、(-104.5±32.8)、(-103.0±39.0)μg·m-2·h-1,N2O通量平均值分别为:(21.2±11.8)、(13.6±6.9)、(13.2±6.2)μg·m-2·h-1;短期禁牧草原与长期禁牧和自由放牧草原CH4平均通量具有显著性差异(P0.05),但CO2和N2O差异不显著(P0.05)。在植物的非生长季(11月—翌年4月),新疆天山高寒短期禁牧、长期禁牧以及自由放牧草原的3种温室气体的通量较低且差异均不显著。  相似文献   

18.
The structural and mechanical properties of methane and carbon dioxide hydrates were investigated using density functional theory simulations. Well-established equations of state of solids and exchange-correlation functionals were used for fitting the unit lattice total energy as a function of volume, and the full second-order elastic constants of these two gas hydrates were determined by energy–strain analyses. The polycrystalline elastic properties were also calculated from the unit lattice results. The final results for methane hydrate agree well with available experimental data and with other theoretical results. The two gas hydrates were found to be highly elastically isotropic, but they differed significantly in shear properties. The presented results for carbon dioxide hydrates are the first complete set reported so far. The results are a significant contribution to the ab initio material characterisation of gas hydrates required for ongoing fundamental studies and technological applications.  相似文献   

19.
This study examines the co-digestion of intermediate landfill leachate and sewage sludge from a municipal wastewater treatment plant. Application of leachate as a co-fermentation component increased the concentrations of soluble organic compounds (expressed as total organic carbon), ammonium nitrogen, and alkalinity in the digester influents.The biogas yield obtained from the co-fermentation of a 20:1 sewage sludge: intermediate leachate mixture was 1.30 m3 per kg of removed volatile solids (VS), while that from a 10:1 mixture was 1.24 m3 per kg of removed VS. These values exceeded the biogas yield for the sludge alone by 13% and 8%, respectively. The leachate addition influenced the proportion of methane to a minor extent. Increased methane yields of 16.9% and 6.2% per kg of removed VS were found for the two sewage sluge:intermediate leachate mixtures, respectively.  相似文献   

20.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号