共查询到20条相似文献,搜索用时 0 毫秒
1.
Di Rosa P Villaescusa JC Longobardi E Iotti G Ferretti E Diaz VM Miccio A Ferrari G Blasi F 《Developmental biology》2007,311(2):324-334
Most of the hypomorphic Prep1i/i embryos (expressing 3-10% of the Prep1 protein), die between E17.5 and P0, with profound anemia, eye malformations and angiogenic anomalies [Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.-C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari G., Blasi, F. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662]. We now report on the hematopoietic phenotype of these embryos. Prep1i/i fetal livers (FL) are hypoplastic, produce less common myeloid progenitors colonies (CFU-GEMM) in cytokine-supplemented methylcellulose and have an increased number of B-cells precursors that differentiate poorly. Prep1i/i FL is able to protect lethally irradiated mice only at high cell doses but the few protected mice show major anomalies in all hematopoietic lineages in both bone marrow (BM) and peripheral organs. Prep1i/i FL cells compete inefficiently with wild type bone marrow in competitive repopulation experiments, suggesting that the major defect lies in long-term repopulating hematopoietic stem cells (LTR-HSC). Indeed, wt embryonic expression of Prep1 in the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), cKit+Sca1+Lin−AA4.1+ (KSLA) cells and B-lymphocytes precursors agrees with the observed phenotype. We therefore conclude that Prep1 is required for a correct and complete hematopoiesis. 相似文献
2.
3.
4.
5.
Söderberg C Wraith A Ringvall M Yan YL Postlethwait JH Brodin L Larhammar D 《Journal of neurochemistry》2000,75(3):908-918
Neuropeptide Y (NPY) and peptide YY (PYY) are related 36-amino acid peptides. NPY is widely distributed in the nervous system and has several physiological roles. PYY serves as an intestinal hormone as well as a neuropeptide. We report here cloning of the npy and pyy genes in zebrafish (Danio rerio). NPY differs at only one to four amino acid positions from NPY in other jawed vertebrates. Zebrafish PYY differs at three positions from PYY from other fishes and at 10 positions from mammals. In situ hybridization showed that neurons containing NPY mRNA have a widespread distribution in the brain, particularly in the telencephalon, optic tectum, and rhombencephalon. PYY mRNA was found mainly in brainstem neurons, as reported previously for vertebrates as divergent as the rat and the lamprey, suggesting an essential role for PYY in these neurons. PYY mRNA was observed also in the telencephalon. These results were confirmed by immunocytochemistry. As in the human, the npy gene is located adjacent to homeobox (hox) gene cluster A (copy a in zebrafish), whereas the pyy gene is located close to hoxBa. This suggests that npy and pyy arose from a common ancestral gene in a chromosomal duplication event that also involved the hox gene clusters. As zebrafish has seven hox clusters, it is possible that additional NPY family genes exist or have existed. Also, the NPY receptor system seems to be more complex in zebrafish than in mammals, with at least two receptor genes without known mammalian orthologues. 相似文献
6.
Chaperone proteins are considered to be fairly ubiquitous proteins that promote the correct folding and assembly of multiple newly synthesized proteins. While performing an embryonic screen in zebrafish using morpholino phosphorodiamidate oligonucleotides (MPOs), we identified a role for an endoplasmic reticulum chaperone protein family member, zebrafish GP96. Knockdown of GP96 resulted in a specific otolith formation defect during early ear development. Otolith precursor particles did not adhere to the kinocilia of the tether cells in the GP96-MPO-injected embryos, aggregating instead into a single clump. Although otolith development was abnormal, the patterning of the ear and the differentiation of tether cells and macular sensory and support cells was not affected. We have isolated and sequenced the full open reading frame of zebrafish GP96 and characterized its expression pattern. GP96 is expressed both maternally and zygotically. GP96 RNA is localized within the floorplate, hatching gland, and in the cells of the otic placode and otic vesicle, consistent with the function of GP96 in ear development. We conclude that the GP96 chaperone protein is involved in the otolith formation during normal ear development. This is the first report of a specific function during organism development being attributed to a chaperone class molecule. 相似文献
7.
Background
Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1) has been reported, its function in neural crest development is unclear.Methods/Principal Findings
We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis.Conclusions/Significance
Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification. 相似文献8.
9.
Cerebellar granule cells (CGCs) are the most abundant neuronal type in the mammalian brain, and their differentiation is regulated by the basic helix-loop-helix gene, Math1. However, little is known about downstream genes of Math1 and their functions in the cerebellum. To investigate them, we have here established an electroporation-based in vivo gene transfer method in the developing mouse cerebellum. Misexpression of Math1 ectopically induced expression of Bar-class homeobox genes, Mbh1 and Mbh2, which are expressed by CGCs. Conversely, their expression was repressed in CGCs by knockdown of Math1. These findings, taken together with chromatin immunoprecipitation assays, suggest that Math1 directly regulates the Mbh genes in CGCs. Furthermore, a dominant-negative form of the Mbh proteins disrupted proper formation of the external granule layer and differentiation of CGCs, whereas misexpression of the Mbh genes ectopically induced expression of a CGC marker in nonneuronal cells, indicating that the Mbh proteins are required for the differentiation of CGCs. 相似文献
10.
To study the function of selenoproteins in development and growth we have used a lethal mutation (selD(ptuf)) of the Drosophila homologous selenophosphate synthetase (selD) gene. This enzyme is involved in the selenoprotein biosynthesis. The selD(ptuf) loss-of-function mutation causes aberrant cell proliferation and differentiation patterns in the brain and imaginal discs, as deduced from genetic mosaics, patterns of gene expression and analysis of cell cycle markers. In addition to that, selenium metabolism is also necessary for the ras/MAPKinase signal tansduction pathway. Therefore, the use of Drosophila imaginal discs and brain and in particular the selD(ptuf) mutation, provide an excellent model to investigate the role of selenoproteins in the regulation of cell proliferation, growth and differentiation. 相似文献
11.
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome. 相似文献
12.
13.
14.
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the lower jaw structures. Alcian blue staining of morpholino-mediated knockdown of wnt9a results in loss of the ethmoid plate, absence of lateral and posterior parachordals, and significant abrogation of the lower jaw structures. Analysis of cranial neural crest cells in the sox10:eGFP transgenic demonstrates that the wnt9a is required early during pharyngeal development, and confirms that the absence of Alcian blue staining is due to absence of neural crest derived chondrocytes. Molecular analysis of genes regulating cranial neural crest migration and chondrogenic differentiation suggest that wnt9a is dispensable for early cranial neural crest migration, but is required for chondrogenic development of major craniofacial structures. Taken together, these data corroborate the central role for Wnt signaling in vertebrate craniofacial development, and reveal that wnt9a provides the signal from the pharyngeal epithelium to support craniofacial chondrogenic morphogenesis in zebrafish. 相似文献
15.
Zhao Y Yang Z Phelan JK Wheeler DA Lin S McCabe ER 《Molecular endocrinology (Baltimore, Md.)》2006,20(11):2630-2640
Mutations in the human nuclear receptor, DAX1, cause X-linked adrenal hypoplasia congenita (AHC). We report the isolation and characterization of a DAX1 homolog, dax1, in zebrafish. The dax1 cDNA encodes a protein of 264 amino acids, including the conserved carboxy-terminal ligand binding-like motif; but the amino-terminal region lacks the unusual repeats of the DNA binding-like domain in mammals. Genomic sequence analysis indicates that the dax1 gene structure is conserved also. Whole-mount in situ hybridization revealed the onset of dax1 expression in the developing hypothalamus at approximately 26 h post fertilization (hpf). Later, at about 28 hpf, a novel expression domain for dax1 appeared in the trunk. This bilateral dax1-expressing structure was located immediately above the yolk sac, between the otic vesicle and the pronephros. Interestingly, weak and transient expression of dax1 was observed in the interrenal glands (adrenal cortical equivalents) at approximately 31 hpf. This gene was also expressed in the liver after 3 dpf in the zebrafish larvae. Disruption of dax1 function by morpholino oligonucleotides (MO) down-regulated expression of steroidogenic genes, cyp11a and star, and led to severe phenotypes similar to ff1b (SF1) MO-injected embryos. Injection of dax1 MO did not affect ff1b expression, whereas ff1b MO abolished dax1 expression in the interrenal organ. Based on these results, we propose that dax1 is the mammalian DAX1 ortholog, functions downstream of ff1b in the regulatory cascades, and is required for normal development and function of the zebrafish interrenal organ. 相似文献
16.
VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity
Kassmeier MD Mondal K Palmer VL Raval P Kumar S Perry GA Anderson DK Ciborowski P Jackson S Xiong Y Swanson PC 《The EMBO journal》2012,31(4):945-958
The N-terminus of full-length RAG1, though dispensable for RAG1/2 cleavage activity, is required for efficient V(D)J recombination. This region supports RING E3 ubiquitin ligase activity in vitro, but whether full-length RAG1 functions as a single subunit or a multi-subunit E3 ligase in vivo is unclear. We show the multi-subunit cullin RING E3 ligase complex VprBP/DDB1/Cul4A/Roc1 associates with full-length RAG1 through VprBP. This complex is assembled into RAG protein-DNA complexes, and supports in-vitro ubiquitylation activity that is insensitive to RAG1 RING domain mutations. Conditional B lineage-specific VprBP disruption arrests B-cell development at the pro-B-to-pre-B cell transition, but this block is bypassed by expressing rearranged immunoglobulin transgenes. Mice with a conditional VprBP disruption show modest reduction of D-J(H) rearrangement, whereas V(H)-DJ(H) and V(κ)-J(κ) rearrangements are severely impaired. D-J(H) coding joints from VprBP-insufficent mice show longer junctional nucleotide insertions and a higher mutation frequency in D and J segments than normal. These data suggest full-length RAG1 recruits a cullin RING E3 ligase complex to ubiquitylate an unknown protein(s) to limit error-prone repair during V(D)J recombination. 相似文献
17.
Reproductive tract abnormalities and male infertility have higher incidence in ADPKD patients than in general populations. In this work, we reveal that Pkd1, whose mutations account for 85% of ADPKD cases, is essential for male reproductive tract development. Disruption of Pkd1 caused multiple organ defects in the murine male reproductive tract. The earliest visible defect in the Pkd1?/? reproductive tract was cystic dilation of the efferent ducts, which are derivatives of the mesonephric tubules. Epididymis development was delayed or arrested in the Pkd1?/? mice. No sign of epithelial coiling was seen in the null mutants. Disruption of Pkd1 in epithelium alone using the Pax2-cre mice was sufficient to cause efferent duct dilation and coiling defect in the epididymis, suggesting that Pkd1 is critical for epithelium development and maintenance in male reproductive tract. In-depth analysis showed that Pkd1 is required to maintain tubulin cytoskeleton and important for Tgf-β/Bmp signal transduction in epithelium of male reproductive tract. Altogether, our results for the first time provide direct evidence for developmental roles of Pkd1 in the male reproductive tract and provide new insights in reproductive tract abnormalities and infertility in ADPKD patients. 相似文献
18.
Yingfei Wang† No S. Kim† Xiaoling Li‡ Peter A. Greer§¶ Raymond C. Koehler‡ Valina L. Dawson††† Ted M. Dawson† 《Journal of neurochemistry》2009,110(2):687-696
Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N -methyl- N '-nitro- N -nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos. 相似文献
19.
20.
Smad5 is required for mouse primordial germ cell development 总被引:9,自引:0,他引:9
Smad5, together with Smad1 and Smad8, have been implicated as downstream signal mediators for several bone morphogenetic proteins (BMPs). Recent studies have shown that primordial germ cells (PGCs) are absent or greatly reduced in Bmp4 or Bmp8b mutant mice. To define the role of Smad5 in PGC development, we examined PGC number in Smad5 mutant mice by Oct4 whole-mount in situ hybridization and alkaline phosphatase staining. We found ectopic PGC-like cells in the amnion of some Smad5 mutant mice, however, the total number of PGCs was greatly reduced or completely absent in Smad5 mutant embryos, similar to Bmp4 or Bmp8b mutant embryos. Therefore, Smad5 is an important factor involved in PGC generation and localization. 相似文献