首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic beta-cells. Here we demonstrate that glucose-induced INS-1 beta-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 beta-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although beta-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses beta-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 beta-cells in response to 0-25 mM glucose is not altered by preceding p8-induced beta-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human beta-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic beta-cell expansion in vitro and in vivo and support the notion of existing beta-cell replication in the adult organism.  相似文献   

2.
Activin A is expressed in endocrine precursor cells of the fetal pancreatic anlage. To determine the physiological significance of activins in the pancreas, a transgenic mouse line expressing the truncated type II activin receptor under the control of beta-actin promoter was developed. Histological analyses of the pancreas revealed that the pancreatic islets of the transgenic mouse were small in size and were located mainly along the pancreatic ducts. Immunoreactive insulin was detected in islets, some acinar cells, and in some epithelial cells in the duct. In addition, there were abnormal endocrine cells outside the islets. The shape and the size of the endocrine cells varied and some of them were larger than islets. These cells expressed immunoreactive insulin and glucagon. In the exocrine portion, there were morphologically abnormal exocrine cells, which did not form a typical acinar structure. The cells lacked spatial polarity characteristics of acinar cells but expressed immunoreactive amylase, which was distributed diffusely in the cytoplasm. Plasma glucose concentration was normal in the transgenic mouse before and after the administration of glucose. The insulin content of the pancreas in transgenic and normal mice was nearly identical. These results suggest that activins or related ligands regulate the differentiation of the pancreatic endocrine and exocrine cells.  相似文献   

3.
The physiological mechanisms underlying pancreatic beta-cell mass (BCM) homeostasis are complex and not fully resolved. Here we examined the factors contributing to the increased BCM following a mild glucose infusion (GI) whereby normoglycemia was maintained through 96 h. We used morphometric and immunochemical methods to investigate enhanced beta-cell growth and survival in Sprague-Dawley rats. BCM was elevated >2.5-fold over saline-infused control rats by 48 h and increased modestly thereafter. Unexpectedly, increases in beta-cell proliferation were not observed at any time point through 4 days. Instead, enhanced numbers of insulin(+) cell clusters and small islets (400-12,000 microm(2); approximately 23- to 124-microm diameter), mostly scattered among the acini, were observed in the GI rats by 48 h despite no difference in the numbers of medium to large islets. We previously showed that increased beta-cell growth in rodent models of insulin resistance and pancreatic regeneration involves increased activated Akt/PKB, a key beta-cell signaling intermediate, in both islets and endocrine cell clusters. GI in normal rats also leads to increased Akt activation in islet beta-cells, as well as in insulin(+) and insulin(-) cells in the common duct epithelium and endocrine clusters. This correlated with strong Pdx1 expression in these same cells. These results suggest that mechanisms other than proliferation underlie the rapid beta-cell growth response following a mild GI in the normal rat and involve Akt-regulated enhanced beta-cell survival potential and neogenesis from epithelial precursors.  相似文献   

4.
5.
The expression of a dominant negative glucose-dependent insulinotropic polypeptide receptor (GIPRdn) under the control of the rat pro-insulin gene promoter induces severe diabetes mellitus in transgenic mice. This study aims to gain further insight into the effect of the expression of a dominant negative GIPR on glucose homeostasis and postnatal development of the endocrine pancreas. The diabetic phenotype of GIPRdn transgenic animals was first observed between 14 and 21 days of age (urine glucose>1000 mg/dl). After onset of diabetes, serum glucose was significantly higher and insulin values were significantly lower in GIPRdn transgenic mice vs. non-transgenic littermate controls. Morphometric studies of pancreatic islets and their endocrine cell types were carried out at 10, 30 and 90 days of age. The total islet and total beta-cell volume of transgenic mice was severely reduced as compared to control mice, irrespective of the age at sampling (p<0.05). The total volume of isolated insulin positive cells that were not contained within established islets was significantly reduced in transgenic mice, indicating disturbed islet neogenesis. These findings demonstrate in vivo evidence that intact signaling of G-protein coupled receptors is involved in postnatal islet and beta-cell development and neogenesis of the pancreatic islets.  相似文献   

6.
7.
Restoration of the functional potency of pancreatic islets either through enhanced proliferation (hyperplasia) or increase in size (hypertrophy) of beta cells is a major objective for intervention in diabetes. We have obtained experimental evidence that global knock-out of a small, single-span regulatory subunit of Na,K-ATPase, FXYD2, alters glucose control. Adult Fxyd2−/− mice showed significantly lower blood glucose levels, no signs of peripheral insulin resistance, and improved glucose tolerance compared with their littermate controls. Strikingly, there was a substantial hyperplasia in pancreatic beta cells from the Fxyd2−/− mice compared with the wild type littermates, compatible with an observed increase in the level of circulating insulin. No changes were seen in the exocrine compartment of the pancreas, and the mice had only a mild, well-adapted renal phenotype. Morphometric analysis revealed an increase in beta cell mass in KO compared with WT mice. This appears to explain a phenotype of hyperinsulinemia. By RT-PCR, Western blot, and immunocytochemistry we showed the FXYD2b splice variant in pancreatic beta cells from wild type mice. Phosphorylation of Akt kinase was significantly higher under basal conditions in freshly isolated islets from Fxyd2−/− mice compared with their WT littermates. Inducible expression of FXYD2 in INS 832/13 cells produced a reduction in the phosphorylation level of Akt, and phosphorylation was restored in parallel with degradation of FXYD2. Thus we suggest that in pancreatic beta cells FXYD2 plays a role in Akt signaling pathways associated with cell growth and proliferation.  相似文献   

8.
CART peptides are anorexigenic and are widely expressed in the central and peripheral nervous systems, as well as in endocrine cells in the pituitary, adrenal medulla and the pancreatic islets. To study the role of CART in islet function, we used CART null mutant mice (CART KO mice) and examined insulin secretion in vivo and in vitro, and expression of islet hormones and markers of beta-cell function using immunocytochemistry. We also studied CART expression in the normal pancreas. In addition, body weight development and food intake were documented. We found that in the normal mouse pancreas, CART was expressed in numerous pancreatic nerve fibers, both in the exocrine and endocrine portion of the gland. CART was also expressed in nerve cell bodies in the ganglia. Double immunostaining revealed expression in parasympathetic (vasoactive intestinal polypeptide (VIP)-containing) and in fewer sensory fibers (calcitonin gene-related peptide (CGRP)-containing). Although the expression of islet hormones appeared normal, CART KO islets displayed age dependent reduction of pancreatic duodenal homeobox 1 (PDX-1) and glucose transporter-2 (GLUT-2) immunoreactivity, indicating beta-cell dysfunction. Consistent with this, CART KO mice displayed impaired glucose-stimulated insulin secretion both in vivo after an intravenous glucose challenge and in vitro following incubation of isolated islets in the presence of glucose. The impaired insulin secretion in vivo was associated with impaired glucose elimination, and was apparent already in young mice with no difference in body weight. In addition, CART KO mice displayed increased body weight at the age of 40 weeks, without any difference in food intake. We conclude that CART is required for maintaining normal islet function in mice.  相似文献   

9.
The insufficient supply of tissue, loss posttransplantation, and limited potential for expansion of beta-cells restrict the use of islet allotransplantation for diabetes. A way to overcome the supply and expansion problems is to xenotransplant embryonic tissue. We have shown that whole rat pancreatic anlagen isotransplanted into the omentum of rats, or xenotransplanted into costimulatory blocked mice, undergo growth and differentiate into islets surrounded by stoma without exocrine tissue. Isotransplants normalize glucose tolerance in diabetic hosts. Here, we show that embryonic day 29 porcine pancreas transplanted into the omentum of adult diabetic rats undergoes endocrine tissue differentiation over 20 wk and normalizes body weights and glucose tolerance. Unlike rat-to-rodent transplants, individual alpha- and beta-cells engraft without a stromal component, and no immunosuppression is required for pig-to-rat transplants. Herein is described a novel means to effect the xenotransplantation of individual islet cells across a highly disparate barrier.  相似文献   

10.
11.
12.
The physiological performance of an organ depends on an interplay between changes in cellular function and organ size, determined by cell growth, proliferation and death. Nowhere is this more evident than in the endocrine pancreas, where disturbances in function or mass result in severe disease. Recently, the insulin signal-transduction pathway has been implicated in both the regulation of hormone secretion from beta cells in mammals as well as the determination of cell and organ size in Drosophila melanogaster. A prominent mediator of the actions of insulin and insulin-like growth factor 1 (IGF-1) is the 3'-phosphoinositide-dependent protein kinase Akt, also known as protein kinase B (PKB). Here we report that overexpression of active Akt1 in the mouse beta cell substantially affects compartment size and function. There was a significant increase in both beta-cell size and total islet mass, accompanied by improved glucose tolerance and complete resistance to experimental diabetes.  相似文献   

13.
BACKGROUND: The Src-homology 2 domain-containing adaptor protein Shb was recently cloned as a serum-inducible gene in the insulin-producing beta-TC1 cell line. Subsequent studies have revealed an involvement of Shb for apoptosis in NIH3T3 fibroblasts and differentiation in the neuronal PC12 cells. To assess a role of Shb for beta-cell function, transgenic mice utilizing the rat insulin promoter to drive expression of Shb were generated. MATERIALS AND METHODS: A gene construct allowing the Shb cDNA to be expressed from the rat insulin 2 promoter was microinjected into fertilized mouse oocytes and implanted into pseudopregnant mice. Mice containing a low copy number of this transgene were bred and used for further experimentation. Shb expression was determined by Western blot analysis. The insulin-positive area of whole pancreas, insulin secretion of isolated islets and islet cell apoptosis, glucose tolerance tests, and in vivo sensitivity to multiple injections of the beta-cell toxin streptozotocin were determined in control CBA and Shb-transgenic mice. RESULTS: Western blot analysis revealed elevated islet content of the Shb protein. Shb-transgenic mice displayed enhanced glucose-disappearance rates in response to an intravenous glucose injection. The relative pancreatic beta-cell area neonatally and at 6 months of age were increased in the Shb-transgenic mice. Islets isolated from Shb-transgenic mice showed enhanced insulin secretion in response to glucose and increased insulin and DNA content. Apoptosis was increased in islets isolated from Shb-transgenic mice compared with control islets both under basal conditions and after incubation with IL-1 beta + IFN-gamma. Rat insulinoma RINm5F cells overexpressing Shb displayed decreased viability during culture in 0.1% serum and after exposure to a cytotoxic dose of nicotinamide. Shb-transgenic mice injected with multiple doses of streptozotocin showed increased blood glucose values compared with the corresponding controls, suggesting increased in vivo susceptibility to this toxin. CONCLUSION: The results suggest that Shb has dual effects on beta-cell growth: whereas Shb increases beta-cell formation during late embryonal stages, Shb also enhances beta-cell death under certain stressful conditions and may thus contribute to beta-cell destruction in type 1 diabetes.  相似文献   

14.
BACKGROUND: The loss of beta cells in type 1 diabetes may involve protein kinases because they control cell growth, differentiation, and survival. Previous studies have revealed that GTK, a Src-like protein tyrosine kinase expressed in beta cells (also named Bsk/Iyk), regulates multiple responses including growth and survival of rat insulinoma cells (RINm5F) and differentiation of neuronal PC12 cells. In the present study, we have generated a transgenic mouse expressing a kinase active GTK mutant (GTK-Y504F) under the control of the rat insulin I promoter to establish a role of GTK in beta cells. MATERIALS AND METHODS: Control and GTK-transgenic CBA mice were used for determination of in vivo glucose tolerance and the relative insulin-positive area. Isolated islets from both groups were cultured in the absence and presence of cytokines and insulin secretion, viability and protein expression were assessed. RESULTS: The beta-cell mass of GTK-transgenic mice was increased as a consequence of a larger pancreas and an increased relative beta-cell area. Islets isolated from the transgenic animals exhibited an enhanced glucose-induced insulin release and reduced viability in response to cytokines that could not be explained by higher levels of nitric oxide (NO) compared with control islets. Extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), and Akt were all activated by cytokines, but GTK-transgenic islets contained higher basal levels of phosphorylated ERK1/2 and lower basal levels of phosphorylated p38 compared with the control islets. The total amount of activated MAPKs was, however, higher in the cytokine-stimulated transgenic islets compared with the control islets due to increased levels of phospho-ERK1/2. Moreover, the proline-rich tyrosine kinase (PYK) 2 (also named RAFTK/CAK beta/CADTK) levels were elevated in response to a 24-hr exposure to cytokines in control islets but not in the GTK-transgenic islets. CONCLUSIONS: These results suggest that although GTK increases the beta-cell mass, it also enhances islet cell death in response to cytokines and may thus be involved in the beta-cell damage in type 1 diabetes.  相似文献   

15.
Some individuals develop prediabetes and/or diabetes following acute pancreatitis (AP). AP-induced beta-cell injury and the limited regenerative capacity of beta cells might account for pancreatic endocrine insufficiency. Previously, we found that only a few pancreatic cytokeratin 5 positive (Krt5+) cells differentiated into beta cells in the murine AP model, which was insufficient to maintain glucose homeostasis. Notch signaling determines pancreatic progenitor differentiation in pancreas development. This study aimed to examine whether Notch signaling inhibition could promote pancreatic Krt5+ cell differentiation into beta cells and improve glucose homeostasis following AP. Pancreatic tissues from patients with acute necrotizing pancreatitis (ANP) were used to evaluate beta-cell injury, Krt5+ cell activation and differentiation, and Notch activity. The murine AP model was induced by cerulein, and the effect of Notch inhibition on Krt5+ cell differentiation was evaluated both in vivo and in vitro. The results demonstrated beta-cell loss in ANP patients and AP mice. Krt5+ cells were activated in ANP pancreases along with persistently elevated Notch activity, which resulted in the formation of massive duct-like structures. AP mice that received Notch inhibitor showed that impaired glucose tolerance was reversed 7 and 15 days following AP, and increased numbers of newborn small islets due to increased differentiation of Krt5+ cells to beta cells to some extent. In addition, Krt5+ cells isolated from AP mice showed increased differentiation to beta cells by Notch inhibition. Collectively, these findings suggest that beta-cell loss contributes to pancreatic endocrine insufficiency following AP, and inhibition of Notch activity promotes pancreatic Krt5+ cell differentiation to beta cells and improves glucose homeostasis. The findings from this study may shed light on the potential treatment of prediabetes/diabetes following AP.Subject terms: Endocrine system and metabolic diseases, Pancreatitis  相似文献   

16.
Insulin and insulin-like growth factors (IGF) play overlapping and complementary roles in pancreatic beta-cell function and peripheral metabolism. In this study, we have analyzed mice bearing loss-of-function mutations of the insulin/IGF signaling systems. Combined inactivation of insulin receptor (Insr) and Igf1 receptor (Igf1r), but not of either receptor alone, resulted in a 90% decrease in the size of the exocrine pancreas, because of decreased cellular proliferation. In contrast to the findings in the exocrine compartment, endocrine alpha- and beta-cell development was unperturbed. Combined ablation of Igf1 and Igf2, the ligands for these two receptors, resulted in an identical phenotype. We also examined the effect of heterozygous null Igf1r mutations on glucose homeostasis in adult mice. Igf1r haploinsufficiency did not affect insulin action and compensatory beta-cell growth in insulin-resistant mice with combined Insr and Igf1r heterozygous null mutations, resulting in a considerably milder phenotype than combined haploinsufficiency for Insr and its main signaling substrates, Irs1 and Irs2. We conclude that Igf1r and Insr are required for embryonic development of the exocrine but not of the endocrine pancreas and that defects of Igf1r do not alter glucose homeostasis as long as the insulin receptor system remains intact.  相似文献   

17.
Development of diabetes generally reflects an inadequate mass of insulin-producing beta-cells. beta-cell proliferation and differentiation are regulated by a variety of growth factors and hormones, including insulin-like growth factor I (IGF-I). GRF1 is a Ras-guanine nucleotide exchange factor known previously for its restricted expression in brain and its role in learning and memory. Here we demonstrate that GRF1 is also expressed in pancreatic islets. Interestingly, our GRF1-deficient mice exhibit reduced body weight, hypoinsulinemia and glucose intolerance owing to a reduction of beta-cells. Whereas insulin resistance is not detected in peripheral tissues, GRF1 knockout mice are leaner due to increased lipid catabolism. The reduction in circulating insulin does not reflect defective glucose sensing or insulin production but results from impaired beta-cell proliferation and reduced neogenesis. IGF-I treatment of isolated islets from GRF1 knockouts fails to activate critical downstream signals such as Akt and Erk. The observed phenotype is similar to manifestations of preclinical type 2 diabetes. Thus, our observations demonstrate a novel and specific role for Ras-GRF1 pathways in the development and maintenance of normal beta-cell number and function.  相似文献   

18.
We have generated transgenic mice that express green fluorescent protein (GFP) under the control of the mouse insulin I gene promoter (MIP). The MIP-GFP mice develop normally and are indistinguishable from control animals with respect to glucose tolerance and pancreatic insulin content. Histological studies showed that the MIP-GFP mice had normal islet architecture with coexpression of insulin and GFP in the beta-cells of all islets. We observed GFP expression in islets from embryonic day E13.5 through adulthood. Studies of beta-cell function revealed no difference in glucose-induced intracellular calcium mobilization between islets from transgenic and control animals. We prepared single-cell suspensions from both isolated islets and whole pancreas from MIP-GFP-transgenic mice and sorted the beta-cells by fluorescence-activated cell sorting based on their green fluorescence. These studies showed that 2.4 +/- 0.2% (n = 6) of the cells in the pancreas of newborn (P1) and 0.9 +/- 0.1% (n = 5) of 8-wk-old mice were beta-cells. The MIP-GFP-transgenic mouse may be a useful tool for studying beta-cell biology in normal and diabetic animals.  相似文献   

19.
The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s) of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented.  相似文献   

20.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号