首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms exposed to a combination of weak, parallel static and alternating magnetic fields show a distinct response when the frequency of the alternating component is formally equal to the cyclotron frequencies for Ca2+ or other biologically important ions. It is impossible to explain the observable phenomenon through a magnetoinduced drift of the ions, as the Lorentz force is too small to change ionic movements. In similar conditions, a resonance-like response arises when the alternating field is tuned to the Larmor frequency for nuclear-spin magnetic moments. The mechanism of these phenomena is also still unclear. In this communication, arguments are presented whereby both types of effect can be treated in a unified context, for which the existence of ion-specific magnetic dipoles must be postulated.  相似文献   

2.
It was shown that water with additions of Ca2+, Na+, K+ and Cl- ions preliminarily treated with weak combined constant (42 microT) and low-frequency alternating (0.06 microT) magnetic fields affects the intrinsic fluorescence of bovine serum albumin, the magnitude of the effect being dependent on the frequency of the alternating field and ionic composition of the aqueous salt solution. A practically complete transfer of the effect through a small portion of the solution treated with magnetic fields was revealed. It was also found that after magnetic treatment, the solution contains a rather large (molecular mass 700-900 D) and stable molecular associate, which possesses, at least partially, the properties and characteristics inherent in the whole solution that were as acquired as a result of magnetic treatment.  相似文献   

3.
Abstract Protoplasts from Saccharomyces cerevisiae and Saccharomyces diastaticus were collected in a non-homogeneous alternating electric field. The dependence of the viability of the protoplasts on different conditions of collection was tested by determining the regeneration rates in each case. The parameters varied in collection were the field strength (0.33 kV/cm–6.67 kV/cm), the frequency of the alternating field (1–2 MHz) and the collection time (2–10 min). The introduction of a new type of fusion chamber (meander chamber) permitted, for the first time, quantitative exposure of protoplasts to the electric field as well as their complete transference into the regeneration medium. The regeneration rates of yeast protoplasts collected under those conditions employed for electrofusion did not differ from those of protoplasts which had been maintained under the same experimental conditions but were not subject to the influence of an alternating electric field. The two yeast strains were fused together (collection 1 kV/cm; pulse 15 kV/cm; duration of pulse 40 μs) and the fusion products were introduced into a selection medium for regeneration. The fusion rate was about 4.8 × 10−4; on average 272 colonies grew on the selection medium for each chamber filling.  相似文献   

4.
Ermakov AM  Lednev VV 《Biofizika》2010,55(4):715-719
The effects of weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+ and extremely weak alternating magnetic field on the metamorphosis of the meal-worm beetle Tenebrio molitor have been studied. It was shown that the exposure of pupas of insects to all above-indicated types of fields stimulates the metamorphosis. However, after the exposure to weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+, the number of insects with anomalies increases, which is not observed by the action of the weak alternating magnetic field.  相似文献   

5.
A method was developed for electrofusion of higher-plant protoplasts from celery and protoplasts from the filamentous fungus Aspergillus nidulans. Initially, methods for the fusion of protoplasts from ecch species were determined individually and, subsequently, electrical parameters for fusion between the species were determined. Pronase-E treatment and the presence of calcium ions markedly increased celery protoplast stability under the electrical conditions required and increased fusion frequency with A. nidulans protoplasts. A reduction in protoplast viability was observed after electrofusion but the majority of the protoplasts remained viable over a 24-h incubation period. A small decline in protoplast respiration rate occurred during incubation but those celery protoplasts fused with A. nidulans protoplasts showed elevated respiration rates for 3 h after electrofusion.Abbreviations AC alternating current - DC direct current  相似文献   

6.
Abstract Electrical parameters were determined and quantified for the stimulation of the optimum alignment and fusion of Aspergillus nidulans protoplasts. In a non-homogeneous alternating electrical field A. nidulans protoplasts aligned to form pearl chains associated with the electrodes of the fusion chamber. Most protoplasts were in pearl chains in an alignment field frequency of 3.0 MHz but maximum pair formation occurred at 1.0 MHz. At a field strength between 100 and 1000 V · cm−1 pearl chain formation occurred with minimal protoplast rotation or lysis. The application of DC pulses resulted in protoplast fusion. Most fusion events were observed after two 500 V · cm−1 DC pulses with a 0.5 s interpulse period. Using 1 × 103 protoplasts · cm−3 in a 7 μm fusion chamber a maximum of 17.2 ± 2.0% fusion events were achieved.  相似文献   

7.
Ermakov  A. M.  Lednev  V. V. 《Biophysics》2010,55(4):633-636
The effects of weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+ and extremely weak alternating magnetic field on the metamorphosis of the mealworm beetle Tenebrio molitor have been studied. It was shown that the exposure of pupas of insects to all above-indicated types of fields stimulates the metamorphosis. However, after the exposure to weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+, the number of insects with anomalies increases, which is not observed by the action of the weak alternating magnetic field.  相似文献   

8.
Calcium-ion uptake by normal and leukemia lymphocytes increased during a 30-min exposure to a 13.6 Hz, sinusoidal magnetic field at 20 microT peak. The time-varying field was horizontal and parallel to a 16.5 microT component of the ambient static magnetic field. The uptake of 45Ca2+ increased 102% in a line of murine, cytotoxic T-lymphocytes (C57B1/6-derived CTLL-1), increased 126% in freshly-isolated spleen lymphocytes (C57B1/6 mice), and increased 75% in a line of lymphoma cells (C57B1/6-derived EL4). In contrast, there was no effect when the same field was applied for 30 min immediately before--as opposed to during--incorporation of calcium ions. When spleen lymphocytes were exposed during incubation with 45Ca2+ to a 60 Hz magnetic field at 20 microT peak, a small but statistically significant increase (37%) in uptake of the labeled ions occurred. These results indicate that weak, alternating magnetic fields might affect calcium-dependent functions of normal and leukemic lymphocytes.  相似文献   

9.
The effect of extremely weak alternating magnetic fields of various types with the amplitudes δ of 2 μT on the heart rate variability in humans was studied. Volunteers were placed in a large-volume coil system (2ω2ω2 m), which provided exposure of the whole body to extremely weak alternating magnetic fields uniform in their amplitude. It was shown for the first time that the exposure to such fields could both increase and decrease the magnitude of stress in humans. In particular, the field tuned to the nuclear spins of hydrogen atoms (amplitude, 1.6 μT and frequency, 76 Hz) decreased the Baevsky stress index, whereas the field tuned to the magnetic moments formed by the orbiting electrons in some atoms (amplitude, 0.192 μT and frequency, 3000 Hz) increased this index. These results provide a possible explanation for the mechanisms of adverse effects caused by extremely weak alternating magnetic fields of certain types of both technogenic and natural origins on the human cardiovascular system.  相似文献   

10.
The electrical parameters important in the fusion of plant protoplasts aligned dielectrophoretically in high-frequency alternating electric fields have been established. Protoplasts were aligned in an alternating electric field between two relatively distant (1 mm) electrodes, by dielectrophoresis induced by field inhomogeneities caused by the protoplasts themselves. This arrangement allowed ease of manipulations, large throughput and low loss of protoplasts. In analytical experiments, sufficiently large samples could be used to study pulse duration-fusion response relations at different pulse voltages for protoplasts of different species, tissues and size (mesophyll protoplasts of Solanum brevidens, Triticum aestivum, Hordeum vulgare; suspension-culture protoplasts of Nicotiana sylvestris, N. rustica, Datura innoxia and S. brevidens; root-tip protoplasts of Vicia faba, hypocotyl protoplasts of Brassica napus). The percentage of aligned protoplasts that fused increased with increasing pulse parameters (pulse duration; voltage) above a threshold that was dependant on pulse voltage. The maximum fusion values obtained depended on a number of factors including protoplast origin, size and chain length. Leaf mesophyll protoplasts fused much more readily than suspension-culture protoplasts. For both types, there was a correlation of size with fusion yield: large protoplasts tended to fuse more readily than small protoplasts. In short chains (five protoplasts), fusion frequency was lower, but the proportion of one-to-one products was greater than in long chains (ten protoplasts). In formation by electrofusion of heterokaryons between mesophyll and suspension-culture protoplasts, the fusion-frequency response curves reflected those of homofusion of mesophyll protoplasts rather than suspension-culture protoplasts. There was no apparent limitation to the fusion of the smallest mesophyll protoplast with the largest suspension-culture protoplasts. Based on these observations, it is possible to direct fusion towards a higher frequency of one-to-one (mesophyll/suspension) products by incorporating low densities of mesophyll protoplasts in high densities of suspensionculture protoplasts and by using a short fusion pulse. The viability of fusion products, assessed by staining with fluorescein diacetate, was not impaired by standard fusion conditions. On a preparative scale, heterokaryons (S. brevidens mesophyll-N. sylvestris or D. innoxia suspension-culture) were produced by electrofusion and cultured in liquid or embedded in agar, and were capable of wall formation, division and growth. It is concluded that the electrode arrangement described is more suitable for carrying out directed fusions of plant protoplasts than that employing closer electrodes.  相似文献   

11.
Mesophyll protoplasts isolated from in vitro-grown Nicotiana tabacum L. shoots were subjected to electrofusion.Dielectrophoresis was induced by an AC field of 50 V cm-1 inter-electrode distance and 0.5 MHz oscillation frequency. Fusion was effected by two 0.7 kV cm-1 DC pulses, each of 50 s duration, applied within one second of each other. Various chemical treatments were tested for their effects on dielectrophoresis efficiencies (percentages of protoplasts that made contact with at least one other protoplast under the AC field), fusion efficiencies (percentages of protoplasts participating in fusion events), cell lysis (percentages of protoplasts bursting during the electrofusion processes), overall viabilities of fusion products 24 h post-fusion and overall plating efficiencies 7 d post-fusion (percentages of fusion-derived cells that had undergone division). The various attributes assessed on the electrofusion of protoplasts in the control treatment, 10% mannitol, differed considerably for experiments carried out on different days. Relative to the control treatment, only the Ca2+ treatments, and to a lesser extent lipase treatment reduced dielectrophoresis efficiencies. Polyamines, cytochalasins and Ca2+ treatments significantly reduced cell lysis percentages. All electrofusion facilitators tested (except for spermine at 150 mg l-1, the cytochalasins B and D, and Ca2+ treatments) increased fusion efficiencies to more than 1.5 times those obtained with the standard 10% mannitol electrofusion medium. Ca2+ treatments increased overall viabilities of fusion products by more than 1.5 times. With the exception of the prostaglandins, lecithin and CaCl2 treatments, overall plating efficiencies were reduced by treatment of protoplasts with fusion facilitators. Substantial increases in overall plating efficiencies over those observed in the control treatment were obtained using prostaglandin F2a, lecithin and CaCl2.2H2O treatments. The implications of the results are discussed.Abbreviations AC alternating current, approx.-approximately - BA benzylaminopurine, cv.-cultivar - DC direct current, diam.-diameter - FDA fluorescein diacetate - MS Murashige & Skoog (1962) - NAA napthaleneacetic acid - PCM protoplast culture medium - PIM protoplast isolation medium - PPM protoplast purification medium - rpm revolutions per minute - SD(n) standard deviation of a variate - SEM standard error of the mean  相似文献   

12.
We investigated the effects of weak combined magnetic fields (MFs) produced by superimposing a constant MF (in the range 30 - 150 µT) and an alternating MF (100 or 200 nT) on cytokine production in healthy Balb/C male mice exposed 2 h daily for 14 days. The alternating magnetic field was a sum of several frequencies (ranging from 2.5 - 17.5 Hz). The frequencies of the alternating magnetic field were calculated formally based on the cyclotron resonance of ions of free amino acids (glutamic and aspartic acids, arginine, lysine, histidine, and tyrosine). The selection of different intensity and frequency combinations of constant and alternating magnetic fields was performed to find the optimal characteristics for cytokine production stimulation in immune cells. MF with a constant component of 60 μT and an alternating component of 100 nT, which was a sum of six frequencies (from 5 to 7 Hz), was found to stimulate the production of tumor necrosis factor-α, interferon-gamma, interleukin-2, and interleukin-3 in healthy mouse cells and induce cytokine accumulation in blood plasma. Then, we studied the effect of this MF on tumor-bearing mice with solid tumors induced by Ehrlich ascite carcinoma cells by observing tumor development processes, including tumor size, mouse survival rate, and average lifespan. Tumor-bearing mice exposed to a combined constant magnetic field of 60 μT and an alternating magnetic field of 100 nT containing six frequencies showed a strong suppression of tumor growth with an increase in survival rate and enhancement of average lifespan.  相似文献   

13.
Electrofusion of evacuolated and vacuolated oat leaf protoplasts is difficult because of the different size and density of these cells which results in separation of the two fusion partners during dielectrophoresis. The fusion yield of this cell system was considerably enhanced by electrofusion in hypo-osmolar media containing 0.4 M mannitol, 0.1 mM calcium acetate and 0.1% bovine serum albumin. This increase in yield was only achieved if the dielectrophoretically induced membrane contact between the two fusion partners was enhanced by an initial short 'burst' of higher field strength (500 V/cm, peak to peak, for 5 s followed by a reduction of to 90 V/cm, peak to peak, for 20 s, frequency 1 MHz). Due to the high field strength of the alternating field at the beginning of cell chain formation separation of fusion partners of different size and density was mainly avoided. Simultaneously, the short duration of this high field 'burst' avoided the generation of lethal effects in the cell membranes. The subsequent low field strength of the alternating field was sufficient to keep the aligned cells in position. Optimum fusion was induced by a single square pulse of 750 V/cm and 30 musec duration. The time required for rounding up of the heterologous fusion products decreased with decreasing osmolarity. Fusion resulted in a 5.7 +/- 1.2% yield of heterologous fusion products (compared to 0.7% using the conventional electrofusion protocol) as determined by flow cytometric assay. About 50% of the vacuolated oat protoplasts and 20-50% of the heterologous fusion products regenerated their cell walls within 5 days after hypo-osmolar treatment, but no cell divisions could be observed. Evacuolated oat protoplasts died after 2-3 days in culture without any detectable cell wall regeneration.  相似文献   

14.
Abstract Electrofusion of protoplasts of two mutant strains of Hansenula polymorpha resulted in high fusion and hybrid yields when the calcium ions present in the conventional fusion medium replaced by zinc ions. The optimal fusion conditions were an alignment field of 0.4 kV cm−1 strength and 2 MHz frequency for 30 s, followed by two consecutive pulses of 12 kV cm−1 strength and 15 μs duration. With 0.05–0.1 mM zinc ions in the fusion medium an average clone number of 104–105 clones per 108 input cells was reached. The presence of about 0.6 mM magnesium ions in the zinc fusion medium was essential.  相似文献   

15.
Using an electric field pulse technique, we induced fusion between vacuoles and protoplasts of Kalanchoë daigremontiana , between protoplasts from etiolated and green leaf mesophyll, and between mesophyll protoplasts from plants of different physiological properties ( Avena sativa : C3 mechanism of photosynthesis, Kalanchoë daigremontiana : crassulacean acid metabolism). Close membrane contact amongst protoplasts or between protoplasts and vacuoles (as required for fusion) was achieved by the application of an alternating, non-uniform electric field to the suspension. Due to the dielectrophoresis effect the cells attach to each other along the field lines. The fusion process is initiated by the injection of an electric field pulse of high intensity and short duration (μs range). The field intensity has to be sufficiently high to induce reversible breakdown in the area of close membrane contact. After the application of the field pulse, the fusion process is initiated and completed within seconds to a few minutes, depending on the material investigated.
Fusion occurs between protoplasts and vacuoles as well as between protoplasts of different species. Both tonoplast and plasma membranes completely intermingled, indicating that in contrast to suggestions in the literature these membranes are compatible. Furthermore the cytoplasms of etiolated and green protoplasts obviously do not mix after fusion is completed, as etioplasts and chloroplasts kept separated from each other. In all experiments the volume of the fusion product equalled the sum of the compartments that underwent fusion. The wide spectrum of possible applications resulting from these fusion experiments in relation to metabolic problems is discussed.  相似文献   

16.
V. V. Lednev has proposed a mechanism that he suggests would allow very weak magnetic fields, at the cyclotron resonance frequency for Ca2+ ions in the earth's field, to induce biological effects. I show that for four independent reasons no such mechanism can operate.  相似文献   

17.
Belova NA  Lednev VV 《Biofizika》2000,45(6):1108-1111
We determined the dependence of the effect of weak combined magnetic field (CMF) tuned to Ca2+ resonance (Ca(2+)-CMF) on the rate of gravitropic response in apical segments (25 mm long) excised from the 4-day-old seedlings of flax (Linum bienne) on the amplitude and frequency of the alternating component of Ca(2+)-CMF. The results indicate that test-systems derived from plant and animal sources are affected by Ca(2+)-CMF via an identical mechanism.  相似文献   

18.
Lactobacillus casei ATCC 7469 was successfully converted to protoplasts by treatment with endo-7V-acetyl muramidase in sucrose phosphate buffer. For full hydrolysis of cell walls, a high concentration of sucrose and a cold shock were necessary. Mg2+ ions enhanced the stability of protoplasting cells. The cell wall regeneration of protoplasts was more effective on gelatin-induced regeneration medium than with the soft overlay method. The optimal concentration of gelatin was 2.5%. The frequency of regeneration was found to be about 6% for the protoplast prepared by enzyme treatment for 20 min. The mutants having streptomycin resistance and rifampicin resistance, as selection markers for the detection of fusion, were isolated by UV irradiation and NTG treatment. These mutants were stable for at least several transfers. Protoplast fusion was carried out using PEG (50% solution of polyethyleneglycol, M.W. 6,000). The frequency of protoplast fusion was found to be about 10-5.  相似文献   

19.
This investigation examines responses of protoplasts in a systematic and quantitative way to the various electrical treatments used to achieve electrofusion and their individual and cumulative effect on protoplast viability. Mesophyll and cell suspension protoplasts from two species of the same genera, Nicotiana tabacum and N. rustica var brasilia were used in these experiments. Optimal frequencies for alignment of tobacco protoplasts were between 500 kilohertz and 2 megahertz at 100 volts per centimeter. Variations in frequency and voltage of the alternating current (AC) field caused predictable movements of protoplasts within an electrofusion chamber. AC frequencies below 10 hertz or above 5 megahertz significantly decreased the viability of protoplasts in the fusion chamber as estimated by fluorescein diacetate staining 1 hour after treatment. Although the direct current (DC) pulse appeared to have a slight detrimental effect on protoplast viability, this effect was not significantly different from untreated control preparations.

Protoplasts from both leaf mesophyll cells and suspension cells were induced to fuse with one or more 10 to 30 microseconds DC square wave pulses of approximately 1 kilovolt per centimeter after the protoplasts had been closely appressed with an AC field.

  相似文献   

20.
Novikov  V. V.  Sheiman  I. M. 《Biophysics》2012,57(2):244-246
It is shown that treatment with combined constant (42 μT) and alternating magnetic field at 32 Hz (corresponding to the cyclotron frequency for Ca2+ ion) parallel thereto exerts influence on the intensity of planarian fission that depends on the amplitude of the alternating magnetic field. At the alternating component of 100 nT magnitude a stimulatory effect is noted, at 250 nT the number of planarians significantly decreases, while at 500 nT no magnetic field action is registered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号