首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MOTIVATION: To construct a multiple sequence alignment (MSA) of a large number (> approximately 10,000) of sequences, the calculation of a guide tree with a complexity of O(N2) to O(N3), where N is the number of sequences, is the most time-consuming process. RESULTS: To overcome this limitation, we have developed an approximate algorithm, PartTree, to construct a guide tree with an average time complexity of O(N log N). The new MSA method with the PartTree algorithm can align approximately 60,000 sequences in several minutes on a standard desktop computer. The loss of accuracy in MSA caused by this approximation was estimated to be several percent in benchmark tests using Pfam. AVAILABILITY: The present algorithm has been implemented in the MAFFT sequence alignment package (http://align.bmr.kyushu-u.ac.jp/mafft/software/). SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.  相似文献   

2.
Multiple sequence alignment (MSA) is a crucial first step in the analysis of genomic and proteomic data. Commonly occurring sequence features, such as deletions and insertions, are known to affect the accuracy of MSA programs, but the extent to which alignment accuracy is affected by the positions of insertions and deletions has not been examined independently of other sources of sequence variation. We assessed the performance of 6 popular MSA programs (ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, and T-COFFEE) and one experimental program, PRANK, on amino acid sequences that differed only by short regions of deleted residues. The analysis showed that the absence of residues often led to an incorrect placement of gaps in the alignments, even though the sequences were otherwise identical. In data sets containing sequences with partially overlapping deletions, most MSA programs preferentially aligned the gaps vertically at the expense of incorrectly aligning residues in the flanking regions. Of the programs assessed, only DIALIGN-T was able to place overlapping gaps correctly relative to one another, but this was usually context dependent and was observed only in some of the data sets. In data sets containing sequences with non-overlapping deletions, both DIALIGN-T and MAFFT (G-INS-I) were able to align gaps with near-perfect accuracy, but only MAFFT produced the correct alignment consistently. The same was true for data sets that comprised isoforms of alternatively spliced gene products: both DIALIGN-T and MAFFT produced highly accurate alignments, with MAFFT being the more consistent of the 2 programs. Other programs, notably T-COFFEE and ClustalW, were less accurate. For all data sets, alignments produced by different MSA programs differed markedly, indicating that reliance on a single MSA program may give misleading results. It is therefore advisable to use more than one MSA program when dealing with sequences that may contain deletions or insertions, particularly for high-throughput and pipeline applications where manual refinement of each alignment is not practicable.  相似文献   

3.
MAFFT version 5: improvement in accuracy of multiple sequence alignment   总被引:44,自引:3,他引:41  
  相似文献   

4.
Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.  相似文献   

5.
A comparison of MSA tools   总被引:3,自引:0,他引:3  
Multiple sequence alignment (MSA) is essential in phylogenetic, evolutionary and functional analysis. Several MSA tools are available in the literature. Here, we use several MSA tools such as ClustalX, Align-m, T-Coffee, SAGA, ProbCons, MAFFT, MUSCLE and DIALIGN to illustrate comparative phylogenetic trees analysis for two datasets. Results show that there is no single MSA tool that consistently outperforms the rest in producing reliable phylogenetic trees.  相似文献   

6.
In a case study of fungi of the class Sordariomycetes, we evaluated the effect of multiple sequence alignment (MSA) on the reliability of the phylogenetic trees, topology and confidence of major phylogenetic clades. We compared two main approaches for constructing MSA based on (1) the knowledge of the secondary (2D) structure of ribosomal RNA (rRNA) genes, and (2) automatic construction of MSA by four alignment programs characterized by different algorithms and evaluation methods, CLUSTAL, MAFFT, MUSCLE, and SAM. In the primary fungal sequences of the two functional rRNA genes, the nuclear small and large ribosomal subunits (18 S and 28 S), we identified four and six, respectively, highly variable regions, which correspond mainly to hairpin loops in the 2D structure. These loops are often positioned in expansion segments, which are missing or are not completely developed in the Archaeal and Eubacterial kingdoms. Proper sorting of these sites was a key for constructing an accurate MSA. We utilized DNA sequences from 28 S as an example for one-gene analysis. Five different MSAs were created and analyzed with maximum parsimony and maximum likelihood methods. The phylogenies inferred from the alignments improved with 2D structure with identified homologous segments, and those constructed using the MAFFT alignment program, with all highly variable regions included, provided the most reliable phylograms with higher bootstrap support for the majority of clades. We illustrate and provide examples demonstrating that re-evaluating ambiguous positions in the consensus sequences using 2D structure and covariance is a promising means in order to improve the quality and reliability of sequence alignments.  相似文献   

7.
Motivations: Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. RESULTS: We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. AVAILABILITY: BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/  相似文献   

8.
Current genomic screens for noncoding RNAs (ncRNAs) predict a large number of genomic regions containing potential structural ncRNAs. The analysis of these data requires highly accurate prediction of ncRNA boundaries and discrimination of promising candidate ncRNAs from weak predictions. Existing methods struggle with these goals because they rely on sequence-based multiple sequence alignments, which regularly misalign RNA structure and therefore do not support identification of structural similarities. To overcome this limitation, we compute columnwise and global reliabilities of alignments based on sequence and structure similarity; we refer to these structure-based alignment reliabilities as STARs. The columnwise STARs of alignments, or STAR profiles, provide a versatile tool for the manual and automatic analysis of ncRNAs. In particular, we improve the boundary prediction of the widely used ncRNA gene finder RNAz by a factor of 3 from a median deviation of 47 to 13 nt. Post-processing RNAz predictions, LocARNA-P's STAR score allows much stronger discrimination between true- and false-positive predictions than RNAz's own evaluation. The improved accuracy, in this scenario increased from AUC 0.71 to AUC 0.87, significantly reduces the cost of successive analysis steps. The ready-to-use software tool LocARNA-P produces structure-based multiple RNA alignments with associated columnwise STARs and predicts ncRNA boundaries. We provide additional results, a web server for LocARNA/LocARNA-P, and the software package, including documentation and a pipeline for refining screens for structural ncRNA, at http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/.  相似文献   

9.
Both multiple sequence alignment and phylogenetic analysis are problematic in the "twilight zone" of sequence similarity (≤ 25% amino acid identity). Herein we explore the accuracy of phylogenetic inference at extreme sequence divergence using a variety of simulated data sets. We evaluate four leading multiple sequence alignment (MSA) methods (MAFFT, T-COFFEE, CLUSTAL, and MUSCLE) and six commonly used programs of tree estimation (Distance-based: Neighbor-Joining; Character-based: PhyML, RAxML, GARLI, Maximum Parsimony, and Bayesian) against a novel MSA-independent method (PHYRN) described here. Strikingly, at "midnight zone" genetic distances (~7% pairwise identity and 4.0 gaps per position), PHYRN returns high-resolution phylogenies that outperform traditional approaches. We reason this is due to PHRYN's capability to amplify informative positions, even at the most extreme levels of sequence divergence. We also assess the applicability of the PHYRN algorithm for inferring deep evolutionary relationships in the divergent DANGER protein superfamily, for which PHYRN infers a more robust tree compared to MSA-based approaches. Taken together, these results demonstrate that PHYRN represents a powerful mechanism for mapping uncharted frontiers in highly divergent protein sequence data sets.  相似文献   

10.
A multiple sequence alignment program, MAFFT, has been developed. The CPU time is drastically reduced as compared with existing methods. MAFFT includes two novel techniques. (i) Homo logous regions are rapidly identified by the fast Fourier transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue. (ii) We propose a simplified scoring system that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length. Two different heuristics, the progressive method (FFT-NS-2) and the iterative refinement method (FFT-NS-i), are implemented in MAFFT. The performances of FFT-NS-2 and FFT-NS-i were compared with other methods by computer simulations and benchmark tests; the CPU time of FFT-NS-2 is drastically reduced as compared with CLUSTALW with comparable accuracy. FFT-NS-i is over 100 times faster than T-COFFEE, when the number of input sequences exceeds 60, without sacrificing the accuracy.  相似文献   

11.
MOTIVATION: The maximum expected accuracy optimization criterion for multiple sequence alignment uses pairwise posterior probabilities of residues to align sequences. The partition function methodology is one way of estimating these probabilities. Here, we combine these two ideas for the first time to construct maximal expected accuracy sequence alignments. RESULTS: We bridge the two techniques within the program Probalign. Our results indicate that Probalign alignments are generally more accurate than other leading multiple sequence alignment methods (i.e. Probcons, MAFFT and MUSCLE) on the BAliBASE 3.0 protein alignment benchmark. Similarly, Probalign also outperforms these methods on the HOMSTRAD and OXBENCH benchmarks. Probalign ranks statistically highest (P-value < 0.005) on all three benchmarks. Deeper scrutiny of the technique indicates that the improvements are largest on datasets containing N/C-terminal extensions and on datasets containing long and heterogeneous length proteins. These points are demonstrated on both real and simulated data. Finally, our method also produces accurate alignments on long and heterogeneous length datasets containing protein repeats. Here, alignment accuracy scores are at least 10% and 15% higher than the other three methods when standard deviation of length is >300 and 400, respectively. AVAILABILITY: Open source code implementing Probalign as well as for producing the simulated data, and all real and simulated data are freely available from http://www.cs.njit.edu/usman/probalign  相似文献   

12.
MUSCLE: multiple sequence alignment with high accuracy and high throughput   总被引:32,自引:0,他引:32  
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.  相似文献   

13.
Multiple sequence alignment using partial order graphs   总被引:14,自引:0,他引:14  
MOTIVATION: Progressive Multiple Sequence Alignment (MSA) methods depend on reducing an MSA to a linear profile for each alignment step. However, this leads to loss of information needed for accurate alignment, and gap scoring artifacts. RESULTS: We present a graph representation of an MSA that can itself be aligned directly by pairwise dynamic programming, eliminating the need to reduce the MSA to a profile. This enables our algorithm (Partial Order Alignment (POA)) to guarantee that the optimal alignment of each new sequence versus each sequence in the MSA will be considered. Moreover, this algorithm introduces a new edit operator, homologous recombination, important for multidomain sequences. The algorithm has improved speed (linear time complexity) over existing MSA algorithms, enabling construction of massive and complex alignments (e.g. an alignment of 5000 sequences in 4 h on a Pentium II). We demonstrate the utility of this algorithm on a family of multidomain SH2 proteins, and on EST assemblies containing alternative splicing and polymorphism. AVAILABILITY: The partial order alignment program POA is available at http://www.bioinformatics.ucla.edu/poa.  相似文献   

14.
It has become clear that noncoding RNAs (ncRNA) play important roles in cells, and emerging studies indicate that there might be a large number of unknown ncRNAs in mammalian genomes. There exist computational methods that can be used to search for ncRNAs by comparing sequences from different genomes. One main problem with these methods is their computational complexity, and heuristics are therefore employed. Two heuristics are currently very popular: pre-folding and pre-aligning. However, these heuristics are not ideal, as pre-aligning is dependent on sequence similarity that may not be present and pre-folding ignores the comparative information. Here, pruning of the dynamical programming matrix is presented as an alternative novel heuristic constraint. All subalignments that do not exceed a length-dependent minimum score are discarded as the matrix is filled out, thus giving the advantage of providing the constraints dynamically. This has been included in a new implementation of the FOLDALIGN algorithm for pairwise local or global structural alignment of RNA sequences. It is shown that time and memory requirements are dramatically lowered while overall performance is maintained. Furthermore, a new divide and conquer method is introduced to limit the memory requirement during global alignment and backtrack of local alignment. All branch points in the computed RNA structure are found and used to divide the structure into smaller unbranched segments. Each segment is then realigned and backtracked in a normal fashion. Finally, the FOLDALIGN algorithm has also been updated with a better memory implementation and an improved energy model. With these improvements in the algorithm, the FOLDALIGN software package provides the molecular biologist with an efficient and user-friendly tool for searching for new ncRNAs. The software package is available for download at http://foldalign.ku.dk.  相似文献   

15.
16.
The taxonomic rank and phylogenetic relationships of the pipizine flower flies (Diptera: Syrphidae: Pipizini) were estimated based on DNA sequence data from three gene regions (COI, 28S and 18S) and 111 adult morphological characters. Pipizini has been treated as a member of the subfamily Eristalinae based on diagnostic adult morphological characteristics, while the larval feeding mode and morphology is shared with members of the subfamily Syrphinae. We analysed each dataset, both separately and combined, in a total evidence approach under maximum parsimony and maximum likelihood. To evaluate the influence of different alignment strategies of rDNA 28S and 18S genes on the resulting topologies, we compared the topologies inferred from a multiple alignment using fast Fourier transform (MAFFT) program with those topologies resulting from aligning the secondary structure of these rDNA genes. Total evidence analyses resolved pipizines as a sister group of the subfamily Syrphinae. Although the structural alignment and the MAFFT alignment differed in the inferred relationships of some clades and taxa, there was congruence in the placement of pipizines. The homogeneous morphology of the Pipizini clade in combination with their unique combination of characters among the Syrphidae suggest a change of rank to subfamily. Thus, we propose to divide Syrphidae into four subfamilies, including the subfamily Pipizinae stat. rev.  相似文献   

17.
Ashkenazy H  Unger R  Kliger Y 《Proteins》2009,74(3):545-555
The main objective of correlated mutation analysis (CMA) is to predict intraprotein residue-residue interactions from sequence alone. Despite considerable progress in algorithms and computer capabilities, the performance of CMA methods remains quite low. Here we examine whether, and to what extent, the quality of CMA methods depends on the sequences that are included in the multiple sequence alignment (MSA). The results revealed a strong correlation between the number of homologs in an MSA and CMA prediction strength. Furthermore, many of the current methods include only orthologs in the MSA, we found that it is beneficial to include both orthologs and paralogs in the MSA. Remarkably, even remote homologs contribute to the improved accuracy. Based on our findings we put forward an automated data collection procedure, with a minimal coverage of 50% between the query protein and its orthologs and paralogs. This procedure improves accuracy even in the absence of manual curation. In this era of massive sequencing and exploding sequence data, our results suggest that correlated mutation-based methods have not reached their inherent performance limitations and that the role of CMA in structural biology is far from being fulfilled.  相似文献   

18.
Multiple comparison or alignmentof protein sequences has become a fundamental tool in many different domains in modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, molecular function and inter-molecular interactions etc. By placing the sequence in the framework of the overall family, multiple alignments can be used to identify conserved features and to highlight differences or specificities. In this paper, we describe a comprehensive evaluation of many of the most popular methods for multiple sequence alignment (MSA), based on a new benchmark test set. The benchmark is designed to represent typical problems encountered when aligning the large protein sequence sets that result from today's high throughput biotechnologies. We show that alignmentmethods have significantly progressed and can now identify most of the shared sequence features that determine the broad molecular function(s) of a protein family, even for divergent sequences. However,we have identified a number of important challenges. First, the locally conserved regions, that reflect functional specificities or that modulate a protein's function in a given cellular context,are less well aligned. Second, motifs in natively disordered regions are often misaligned. Third, the badly predicted or fragmentary protein sequences, which make up a large proportion of today's databases, lead to a significant number of alignment errors. Based on this study, we demonstrate that the existing MSA methods can be exploited in combination to improve alignment accuracy, although novel approaches will still be needed to fully explore the most difficult regions. We then propose knowledge-enabled, dynamic solutions that will hopefully pave the way to enhanced alignment construction and exploitation in future evolutionary systems biology studies.  相似文献   

19.
Multiple sequence alignment (MSA) is one of the most fundamental problems in computational molecular biology. The running time of the best known scheme for finding an optimal alignment, based on dynamic programming, increases exponentially with the number of input sequences. Hence, many heuristics were suggested for the problem. We consider a version of the MSA problem where the goal is to find an optimal alignment in which matches are restricted to positions in predefined matching segments. We present several techniques for making the dynamic programming algorithm more efficient, while still finding an optimal solution under these restrictions. We prove that it suffices to find an optimal alignment of the predefined sequence segments, rather than single letters, thereby reducing the input size and thus improving the running time. We also identify "shortcuts" that expedite the dynamic programming scheme. Empirical study shows that, taken together, these observations lead to an improved running time over the basic dynamic programming algorithm by 4 to 12 orders of magnitude, while still obtaining an optimal solution. Under the additional assumption that matches between segments are transitive, we further improve the running time for finding the optimal solution by restricting the search space of the dynamic programming algorithm  相似文献   

20.
Zhu M  Li M 《Molecular bioSystems》2012,8(6):1686-1693
G-protein coupled receptors (GPCRs) are recognized to constitute the largest family of membrane proteins. Due to the disproportion in the quantity of crystal structures and their amino acid sequences, homology modeling contributes a reasonable and feasible approach to GPCR theoretical coordinates. With the brand new crystal structures resolved recently, herein we deliberated how to designate them as templates to carry out homology modeling in four aspects: (1) various sequence alignment methods; (2) protein weight matrix; (3) different sets of multiple templates; (4) active and inactive state of templates. The accuracy of models was evaluated by comparing the similarity of stereo conformation and molecular docking results between models and the experimental structure of Meleagris gallopavo β(1)-adrenergic receptor (Mg_Adrb1) that we desired to develop as an example. Our results proposed that: (1) Cobalt and MAFFT, two algorithms of sequence alignment, were suitable for single- and multiple-template modeling, respectively; (2) Blosum30 is applicable to align sequences in the case of low sequence identity; (3) multiple-template modeling is not always better than single-template one; (4) the state of template is an influential factor in simulating the GPCR structures as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号