首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon like peptide 1 (GLP-1) is an intestinal hormone that plays an important role in glucose metabolism. GLP-1 is released from mucosal L cells following nutrient ingestion and contributes to the incretin effect, with the enhancement of insulin secretion occurring with enteral compared with intravenous glucose administration. The mechanisms linking nutrient absorption and GLP-1 secretion are unknown, and studies addressing this topic, particularly in small animal models, have been hampered by the relatively low concentrations of GLP-1 in the circulation. We hypothesized that GLP-1 levels would be higher in samples of intestinal lymph compared with plasma and could provide a novel system in which to study meal-induced hormone secretion. We addressed this hypothesis in conscious rats with indwelling catheters in the portal vein and distal intestinal lymph duct. These animals had plasma and lymph sampled before and for 240 min after instillation of a liquid meal in the gastrointestinal tract. Lymph contained detectable concentrations of glucose, insulin, and GLP-1 that were reliably measured using our assays. Before and after the Ensure feeding, plasma insulin levels were approximately two times as high in portal plasma as intestinal lymph. In marked contrast, GLP-1 levels were five to six times higher in lymph relative to portal plasma following nutrient administration. This relative difference in GLP-1 levels was even greater when lymph was compared with peripheral plasma and dramatically exceeded the ratio of lymph to plasma peptide tyrosine-tyrosine concentrations. This is the first observation of a gastrointestinal hormone being disproportionately transported in lymph. The remarkable levels of GLP-1 in intestinal lymph demonstrate the potential for lymphatic sampling as a more sensitive means of studying the secretory physiology of this hormone in vivo. In addition, these data raise the possibility that intestinal lymph may serve as a specialized signaling conduit for regulatory peptides secreted by gastrointestinal endocrine cells.  相似文献   

2.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

3.
Glucagon-like peptide-1 (GLP-1) is an important incretin produced in the L cells of the intestine. It is essential in the regulation of insulin secretion and glucose homeostasis. Systemic GLP-1 concentrations are typically low in rodents, so it can be difficult to assay physiological levels or detect changes in response to nutrients. We have established a method of assaying GLP-1 in response to nutrients using the intestinal lymph fistula model. Intraduodenal infusion of Intralipid (4.43 kcal/3 ml) induced a significant increase of lymphatic GLP-1 concentration compared with saline control at the peak of 30 min. (P < 0.001). Isocaloric and isovolumetric treatment with dextrin, a glucose polymer, also caused a significant fourfold increase in peak concentration at 60 min (P = 0.001). These findings indicate that intestinal lymph contains high concentrations of postprandial GLP-1. Second, they reveal that GLP-1 secretion into lymph occurs in response to both enteral carbohydrate and fat, but the response to dextrin occurs later than to Intralipid with peak times at 60 and 30 min, respectively. Third, the combination of Intralipid plus dextrin demonstrated an additive effect in the stimulation of GLP-1 with peak at 30 min. These results indicate that assessment of levels in lymph is a novel and powerful means of studying the secretion of GLP-1 and potentially other gastrointestinal hormones in vivo. Furthermore, the lymph fistula rat model provides insight into the gut hormone concentrations to which the neurons and cells in the lamina propria of the gut are likely exposed.  相似文献   

4.
Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [14C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [14C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.  相似文献   

5.
Irwin N  Hunter K  Flatt PR 《Peptides》2007,28(11):2192-2198
Glucose-dependent insulinotropic polypeptide (GIP) and peptide YY (PYY) are secreted from the intestinal K- and L-cells, respectively, following a meal. Both peptides are believed to play a key role in glucose homeostasis and energy expenditure. This study investigated the effects of daily administration of the stable and specific GIP-R antagonist, (Pro(3))GIP (25 nmol/kg) and the endogenous truncated form of PYY, PYY(3-36) (50 nmol/kg), in mice fed with a high fat diet. Daily i.p. injection of (Pro(3))GIP, PYY(3-36) or combined peptide administration over 24 days significantly (P<0.05-0.01) decreased body weight compared with saline-treated controls without change in food intake. Plasma glucose levels and glucose tolerance were significantly (P<0.05) lowered by (Pro(3))GIP treatment alone, and in combination with PYY(3-36). These changes were accompanied by a slight improvement of insulin sensitivity in all of the treatment groups. (Pro(3))GIP treatment significantly reduced plasma corticosterone (P<0.05), while combined administration with PYY(3-36) significantly lowered serum glucagon (P<0.05). No appreciable changes were observed in either circulating or glucose-stimulated insulin secretion in all treatment groups. (Pro(3))GIP-treated mice had significantly (P<0.01) lowered fasting glucose levels and an improved (P<0.05) glycemic response to feeding. These comparative data indicate that chemical ablation of GIP receptor action using (Pro(3))GIP provides an especially effective means of countering obesity and related abnormalities induced by consumption of high fat energy rich diet.  相似文献   

6.
The hormone, glucose-dependent insulinotropic peptide (GIP), is an important incretin regulator of the gastrointestinal tract. To investigate whether diet is important for the control of GIP gene expression in the small intestine, GIP messenger RNA (mRNA) levels were measured in rats during fasting and after glucose or fat administration. Ribonuclease protection analyses revealed that glucose and fat administration increased GIP mRNA levels by 4-fold and 2.5-fold, respectively, compared with the control, and that prolonged fasting decreased GIP mRNA levels to 44% of those of control animals. Glucose infusion increased plasma GIP levels and tended to stimulate an increase in the GIP hormone concentration in the mucosa of the small intestine. Administration of fat also stimulated an increase of plasma GIP levels but did not modify tissue GIP concentrations. Prolonged fasting tended to decrease plasma GIP levels, although GIP tissue concentrations did not change. These data suggest that dietary glucose or fat stimulates GIP synthesis and secretion, and that food deprivation causes a decrease in GIP synthesis and secretion. This regulation involves changes at the pretranslational level and is reflected by modifications of GIP mRNA expression.  相似文献   

7.
Effects of insulin excess and deficiency on glucose-dependent insulinotropic polypeptide (GIP) was examined in rats following insulinoma transplantation or streptozotocin (STZ) administration. Over 14 days, food intake was increased (p < 0.001) in both groups of rats, with decreased body weight (p < 0.01) in STZ rats. Non-fasting plasma glucose levels were decreased (p < 0.01) and plasma insulin levels increased (p < 0.001) in insulinoma-bearing rats, whereas STZ treatment elevated glucose (p < 0.001) and decreased insulin (p < 0.01). Circulating GIP concentrations were elevated (p < 0.01) in both animal models. At 14 days, oral glucose resulted in a decreased glycaemic excursion (p < 0.05) with concomitant elevations in insulin release (p < 0.001) in insulinoma-bearing rats, whereas STZ-treated rats displayed similar glucose-lowering effects but reduced insulin levels (p < 0.01). GIP concentrations were augmented in STZ rats (p < 0.05) following oral glucose. Plasma glucose and insulin concentrations were not affected by oral fat, but fat-induced GIP secretion was particularly (p < 0.05) increased in insulinoma-bearing rats. Exogenous GIP enhanced (p < 0.05) glucose-lowering in all groups of rats accompanied by insulin releasing (p < 0.001) effects in insulinoma-bearing and control rats. Both rat models exhibited increased (p < 0.001) intestinal weight but decreased intestinal GIP concentrations. These data suggest that circulating insulin has direct and indirect effects on the synthesis and secretion of GIP.  相似文献   

8.
The lymph fistula rat has been used for studying intestinal absorption of nutrients, especially lipids. Lipid absorption begins with the digestion of triacylglycerol (TAG) to form 2-monoacylglycerol (2-MAG) and fatty acids (FA), which are then incorporated in bile salt-mixed micelles. The mixed micelles deliver these digestion products to enterocytes for uptake. There, 2-MAG and FA are re-esterified to form TAG, which is then incorporated into chylomicrons (CMs) to be carried by the lymphatic system. Coincident with CMs' secretion into lymph, the small intestine also secretes incretin hormones. Advantages of the lymph fistula model in studying CMs and incretin secretion include the following: (1) the animal being conscious, (2) much less dilution of CMs and incretins than in portal blood, and (3) fewer degrading enzymes than portal blood, e.g., dipeptidyl peptidase-IV. Examples of the lymph fistula model being used for studying CMs' transport in normal and pathophysiologic states are presented. Recently, the lymph fistula rat has also been used for studying the secretion of incretins by the small intestine.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

10.
Changes in hepatic insulin clearance can occur after oral glucose or meal ingestion. This has been attributed to the secretion and action of gastric inhibitory polypeptide (GIP) and glucagon-like peptide (GLP)-1. Given the recent availability of drugs based on incretin hormones, such clearance effects may be important for the future treatment of type 2 diabetes. Therefore, we determined insulin clearance in response to endogenously secreted and exogenously administered GIP and GLP-1. Insulin clearance was estimated from the molar C-peptide-to-insulin ratio calculated at basal conditions and from the respective areas under the curve after glucose, GIP, or GLP-1 administration. Oral glucose administration led to an approximately 60% reduction in the C-peptide-to-insulin ratio (P < 0.0001), whereas intravenous glucose administration had no effect (P = 0.09). The endogenous secretion of GIP or GLP-1 was unrelated to the changes in insulin clearance. The C-peptide-to-insulin ratio was unchanged after the intravenous administration of GIP or GLP-1 in the fasting state (P = 0.27 and P = 0.35, respectively). Likewise, infusing GLP-1 during a meal course did not alter insulin clearance (P = 0.87). An inverse nonlinear relationship was found between the C-peptide-to-insulin ratio and the integrated insulin levels after oral and during intravenous glucose administration. Insulin clearance is reduced by oral but not by intravenous glucose administration. Neither GIP nor GLP-1 has significant effects on insulin extraction. An inverse relationship between insulin concentrations and insulin clearance suggests that the secretion of insulin itself determines the rate of hepatic insulin clearance.  相似文献   

11.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert β-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2 diabetes (T2DM). In the present study, we tested the hypothesis that chronically elevating GIP levels in a transgenic (Tg) mouse model would increase adipose tissue expansion and exert beneficial effects on glucose homeostasis. In contrast, although GIP Tg mice demonstrated enhanced β-cell function, resulting in improved glucose tolerance and insulin sensitivity, they exhibited reduced diet-induced obesity. Adipose tissue macrophage infiltration and hepatic steatosis were both greatly reduced, and a number of genes involved in lipid metabolism/inflammatory signaling pathways were found to be down-regulated. Reduced adiposity in GIP Tg mice was associated with decreased energy intake, involving overexpression of hypothalamic GIP. Together, these studies suggest that, in the context of over-nutrition, transgenic GIP overexpression has the potential to improve hepatic and adipocyte function as well as glucose homeostasis.  相似文献   

12.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. This study has utilised numerous well-characterised dipeptidyl peptidase IV-resistant GIP analogues to evaluate the glucagonotropic actions of GIP in Wistar rats and isolated rat islets. Intraperitoneal administration of GIP analogues (25 nmol/kg body weight) in combination with glucose had no effect on circulating glucagon concentrations compared to controls in Wistar rats. However, plasma glucose concentrations were significantly (p<0.05 to p<0.001) lowered by the GIP-receptor agonists, N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL. The GIP antagonist, (Pro3)GIP, caused a significant (p<0.05) reduction in glucagon levels following concurrent administration with saline in Wistar rats. In isolated rat islets native GIP induced a significant (p<0.01) enhancement of glucagon release at basal glucose concentrations, which was completely annulled by (Pro3)GIP. Furthermore, glucagon release in the presence of GLP-1, GIP(Lys37)PAL, N-AcGIP(Lys37)PAL and (Pro3)GIP was significantly (p<0.05 to p<0.001) decreased compared to native GIP in isolated rat islets. These data indicate a modest effect of GIP on glucagon secretion from isolated rat islets, which was not observed in vivo. However, the GIP agonists N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL had no effect on glucagon release demonstrating an improved therapeutic potential for the treatment of type 2 diabetes.  相似文献   

13.
The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass index 23.7 +/- 2.3 kg/m(2)) were studied with the intravenous infusion of GIP (2 pmol.kg(-1).min(-1)) or placebo, each administered to the volunteers on separate occasions from -30 to 360 min in the fasting state. At 0 min, a solid test meal (250 kcal containing [(13)C]sodium octanoate) was served. Gastric emptying was calculated from the (13)CO(2) exhalation rates in breath samples collected over 360 min. Venous blood was drawn in 30-min intervals for the determination of glucose, insulin, C-peptide, and GIP (total and intact). Statistical calculations were made by use of repeated-measures ANOVA and one-way ANOVA. During the infusion, GIP rose to steady-state concentrations of 159 +/- 15 pmol/l for total and 34 +/- 4 pmol/l for intact GIP (P < 0.0001). Meal ingestion further increased GIP concentrations in both groups, reaching peak levels of 265 +/- 20 and 82 +/- 9 pmol/l for total and 67 +/- 7 and 31 +/- 9 pmol/l for intact GIP during the administration of GIP and placebo, respectively (P < 0.0001). There were no differences in glucose, insulin, and C-peptide between the experiments with the infusion of GIP or placebo. Gastric half-emptying times were 120 +/- 9 and 120 +/- 18 min (P = 1.0, with GIP and placebo, respectively). The time pattern of gastric emptying was similar in the two groups (P = 0.98). Endogenous GIP secretion, as derived from the incremental area under the curve of plasma GIP concentrations in the placebo experiments, did not correlate to gastric half-emptying times (r(2) = 0.15, P = 0.15 for intact GIP; r(2) = 0.21, P = 0.086 for total GIP). We conclude that gastric emptying does not appear to be influenced by GIP. The secretion of GIP after meal ingestion is not suppressed by its exogenous administration. The lack of effect of GIP on gastric emptying underlines the differences between GIP and the second incretin glucagon-like peptide 1.  相似文献   

14.
Gastric inhibitory polypeptide (GIP) is a gut derived peptide with multiple emerging physiological actions. Effects of pregnancy and lactation on GIP secretion and related gene expression were studied in Wistar rats. Pregnancy moderately increased feeding (p<0.05), whilst lactation substantially increased food intake (p<0.01 to p<0.001). Circulating GIP was unchanged during pregnancy, but non-fasting plasma glucose was significantly (p<0.01) decreased and insulin increased (p<0.05). Lactation was associated with elevated circulating GIP concentrations (p<0.001) without change of glucose or insulin. Oral glucose resulted in a significantly (p<0.001) decreased glycaemic excursion despite similar glucose-induced GIP and insulin concentrations in lactating rats. Pregnant rats had a similar glycaemic excursion but exhibited significantly lowered (p<0.05) GIP accompanied by elevated (p<0.001) insulin levels. Pregnant rats exhibited increased (p<0.001) islet numbers and individual islet areas were enlarged (p<0.05). There were no significant differences in islet alpha-cell areas, but all groups of rats displayed co-expression of glucagon and GIP in alpha-cells. Lactating rats exhibited significantly (p<0.01) increased intestinal weight, whereas intestinal GIP stores were significantly (p<0.01) elevated only in pregnant rats. Gene expression studies in lactating rats revealed prominent (p<0.01 to p<0.001) increases in mammary gland expression of genes involved in energy turnover, including GIP-R. GIP was present in intestines and plasma of 17 day old foetal rats, with substantially raised circulating concentrations in neonates throughout the period of lactation/suckling. These data indicate that changes in the secretion and action of GIP play an important role in metabolic adaptations during pregnancy and especially lactation.  相似文献   

15.
Conscious rats with chronic gastric fistula were trained for drinking a 14-ml milk meal. The activity of an intestinal hormone, oxyntomodulin (OXM), was studied in this model and compared to that observed when histamine was the stimulus. Under histamine (0.25 mg·kg−1·h−1) stimulation, OXM at doses (60–120 pmol·kg−1·h−1) that induced physiological circulating levels inhibited gastric acid secretion up to 50%. Under meal stimulation, OXM reduced up to 29% acid secretion at doses (1–1.5 nmol·kg−1·h−1) inducing supraphysiological levels. We conclude that at physiological concentrations OXM cannot counteract the complex processes triggered by a meal. OXM would be a component of enterogastrone, a combination of several intestinal hormones acting in synergy. The OXM action is related to pathways recognizing the C-terminal 19–37 moiety of the molecule.  相似文献   

16.
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.  相似文献   

17.
Dramatic improvement of type 2 diabetes is commonly observed after bariatric surgery. However, the mechanisms behind the alterations in glucose homeostasis are still elusive. We examined the effect of duodenal-jejunal bypass (DJB), which maintains the gastric volume intact while bypassing the entire duodenum and the proximal jejunum, on glycemic control, β-cell mass, islet morphology, and changes in enteroendocrine cell populations in nonobese diabetic Goto-Kakizaki (GK) rats and nondiabetic control Wistar rats. We performed DJB or sham surgery in GK and Wistar rats. Blood glucose levels and glucose tolerance were monitored, and the plasma insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) levels were measured. β-Cell area, islet fibrosis, intestinal morphology, and the density of enteroendocrine cells expressing GLP-1 and/or GIP were quantified. Improved postprandial glycemia was observed from 3 mo after DJB in diabetic GK rats, persisting until 12 mo after surgery. Compared with the sham-GK rats, the DJB-GK rats had an increased β-cell area and a decreased islet fibrosis, increased insulin secretion with increased GLP-1 secretion in response to a mixed meal, and an increased population of cells coexpressing GIP and GLP-1 in the jejunum anastomosed to the stomach. In contrast, DJB impaired glucose tolerance in nondiabetic Wistar rats. In conclusion, although DJB worsens glucose homeostasis in normal nondiabetic Wistar rats, it can prevent long-term aggravation of glucose homeostasis in diabetic GK rats in association with changes in intestinal enteroendocrine cell populations, increased GLP-1 production, and reduced β-cell deterioration.  相似文献   

18.
The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic insulin were restored to levels of chow-fed mice, and circulating triglyceride and cholesterol were significantly decreased. (Pro(3))GIP treatment also significantly decreased circulating glucagon and corticosterone, but concentrations of GLP-1, GIP, resistin, and adiponectin were unchanged. Adipose tissue mass, adipocyte hypertrophy, and deposition of triglyceride in liver and muscle were significantly decreased. These changes were accompanied by significant improvement of insulin sensitivity, meal tolerance, and normalization of glucose tolerance in (Pro(3))GIP-treated high-fat-fed mice. (Pro(3))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet.  相似文献   

19.
The postprandial release of immunoreactive insulin, glucagon, gastrin, somatostatin, pancreatic polypeptide (PP), and gastric inhibitory polypeptide (GIP) was studied in parallel with the absorption of sugars and amino acids in conscious pigs. Six pigs fitted with permanent catheters in the portal vein and arterial blood system as well as within an electromagnetic flow probe around the portal vein received successively at 3-day intervals, three meals of 800 g each containing 0, 14, or 28% protein (semisynthetic diets based on fish protein). Blood samples were collected and portal blood flow was recorded during a postprandial period of 8 h. For the same level of feed intake, an increase in the dietary protein concentration led to a higher alpha-amino nitrogen absorption and to a lower appearance of reducing sugars in the portal vein; in addition, the carbohydrate absorption efficiency (amounts absorbed as a percentage of amounts ingested) was reduced, showing the competition between the absorption of amino acids and glucose. The largest absorption occurred during the first 4 h after the meal, but neither the digestion of proteins nor that of carbohydrates were finished 8 h after the meal since portoarterial differences could still be observed. All test meals induced a rise of portal and peripheral concentrations of insulin, gastrin, somatostatin, and PP, and of the systemic level of GIP. Glucagon increased after the 28% protein meal only. The rise of plasma insulin paralleled that of blood glucose, and bore a significant positive relationship to the systemic GIP level in the early postprandial period. In terms of absolute amounts, portoarterial concentration gradients increased postprandially. Insulin release was significantly the highest after intake of the 14% protein diet. The gastrin response was significantly correlated to the amount of protein. Similarly the release of glucagon and somatostatin tended to increase with increasing dietary amount, but differences failed to reach significance (P less than 0.05), except for glucagon 2 h after the meal. There were very close relationships between the hourly amounts of alpha-amino nitrogen absorbed and gastrin and glucagon production, as between insulin and PP secretions. From the present results, the induction of physiological increments of plasma peptide concentration in 60-kg pigs would require infusion rates of about 50-250 micrograms/h for insulin, 1-4 micrograms/h for gastrin 17, 5-10 micrograms/h for glucagon and somatostatin, and 5-50 micrograms/h for PP.  相似文献   

20.
BackgroundThe interaction of nutrients with the small intestine stimulates the secretion of numerous enteroendocrine hormones that regulate postprandial metabolism. However, differences in gastrointestinal hormonal responses between the macronutrients are incompletely understood. In the present study, we compared blood glucose and plasma hormone concentrations in response to standardised intraduodenal (ID) fat and glucose infusions in healthy humans.MethodsIn a parallel study design, 16 healthy males who received an intraduodenal fat infusion were compared with 12 healthy males who received intraduodenal glucose, both at a rate of 2 kcal/min over 120 min. Venous blood was sampled at frequent intervals for measurements of blood glucose, and plasma total and active glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon.ResultsPlasma concentrations of the incretin hormones (both total and active GLP-1 and GIP) and glucagon were higher, and plasma insulin and blood glucose concentrations lower, during intraduodenal fat, when compared with intraduodenal glucose, infusion (treatment by time interaction: P < 0.001 for each).ConclusionsCompared with glucose, intraduodenal fat elicits substantially greater GLP-1, GIP and glucagon secretion, with minimal effects on blood glucose or plasma insulin in healthy humans. These observations are consistent with the concept that fat is a more potent stimulus of the ‘gut-incretin’ axis than carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号