首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type IV pili (T4P) are dynamic surface structures that undergo cycles of extension and retraction. T4P dynamics center on the PilB and PilT proteins, which are members of the secretion ATPase superfamily of proteins. Here, we show that PilB and PilT of the T4P system in Myxococcus xanthus have ATPase activity in vitro. Using a structure-guided approach, we systematically mutagenized PilB and PilT to resolve whether both ATP binding and hydrolysis are important for PilB and PilT function in vivo. PilB as well as PilT ATPase activity was abolished in vitro by replacement of conserved residues in the Walker A and Walker B boxes that are involved in ATP binding and hydrolysis, respectively. PilB proteins containing mutant Walker A or Walker B boxes were nonfunctional in vivo and unable to support T4P extension. PilT proteins containing mutant Walker A or Walker B boxes were also nonfunctional in vivo and unable to support T4P retraction. These data provide genetic evidence that both ATP binding and hydrolysis by PilB are essential for T4P extension and that both ATP binding and hydrolysis by PilT are essential for T4P retraction. Thus, PilB and PilT are ATPases that act at distinct steps in the T4P extension/retraction cycle in vivo.  相似文献   

2.
The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.  相似文献   

3.
Type IV pili (T4P) are ubiquitous bacterial cell surface structures that undergo cycles of extension, adhesion, and retraction. T4P function depends on a highly conserved envelope-spanning macromolecular machinery consisting of 10 proteins that localizes polarly in Myxococcus xanthus. Using this localization, we investigated the entire T4P machinery assembly pathway by systematically profiling the stability of all and the localization of eight of these proteins in the absence of other T4P machinery proteins as well as by mapping direct protein-protein interactions. Our experiments uncovered a sequential, outside-in pathway starting with the outer membrane (OM) PilQ secretin ring. PilQ recruits a subcomplex consisting of the inner membrane (IM) lipoprotein PilP and the integral IM proteins PilN and PilO by direct interaction with the periplasmic domain of PilP. The PilP/PilN/PilO subcomplex recruits the cytoplasmic PilM protein, by direct interaction between PilN and PilM, and the integral IM protein PilC. The PilB/PilT ATPases that power extension/retraction localize independently of other T4P machinery proteins. Thus, assembly of the T4P machinery initiates with formation of the OM secretin ring and continues inwards over the periplasm and IM to the cytoplasm.  相似文献   

4.
Myxococcus xanthus utilizes two motility systems for surface locomotion: A-motility and S-motility. S-motility is mediated by extension and retraction of type IV pili. Cells exhibiting S-motility periodically reverse by switching the assembly of type IV pili from the old leading pole to the new leading pole. These cellular reversals involve regulated pole-to-pole oscillations of the FrzS protein. We constructed and characterized in-frame deletion mutations in several FrzS domains to determine their roles in protein localization. We found that FrzS has distinct domains required for residence at the leading cell pole, pole-to-pole transport and lagging cell pole. Our results are consistent with a model whereby S-motility reversals are mediated by a protein translocation system that delivers motility proteins such as FrzS from the leading cell pole to the lagging cell pole.  相似文献   

5.
A systematic genetic analysis was performed to identify the inner membrane proteins essential for type IV pilus (T4P) expression in Pseudomonas aeruginosa. By inactivating the retraction aspect of pilus function, genes essential for T4P assembly were discriminated. In contrast to previous studies in the T4P system of Neisseria spp., we found that components of the inner membrane subcomplex consisting of PilMNOP were not essential for surface pilus expression, whereas the highly conserved inner membrane protein PilC was essential. Here, we present data that PilC may coordinate the activity of cytoplasmic polymerization (PilB) and depolymerization (PilT) ATPases via their interactions with its two cytoplasmic domains. Using in vitro co-affinity purification, we show that PilB interacts with the N-terminal cytoplasmic domain of PilC. We hypothesized that PilT similarly interacts with the PilC C-terminal cytoplasmic domain. Overexpression of that domain in the wild-type protein reduced twitching motility by ∼50% compared with the vector control. Site-directed mutagenesis of conserved T4P-specific residues in the PilC C-terminal domain yielded mutant proteins that supported wild-type pilus assembly but had a reduced capacity to support twitching motility, suggesting impairment of putative PilC-PilT interactions. Taken together, our results show that PilC is an essential inner membrane component of the T4P system, controlling both pilus assembly and disassembly.  相似文献   

6.
Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals) during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz) activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots.  相似文献   

7.
Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.  相似文献   

8.
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.  相似文献   

9.
Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as essential for A-motility. RomR localizes in a bipolar, asymmetric pattern with a large cluster at the lagging cell pole. The large RomR cluster relocates to the new lagging pole in parallel with cell reversals. Dynamic RomR localization is essential for cell reversals, suggesting that RomR relocalization induces the polarity switching of the A-engine. The analysis of RomR mutants shows that the output domain targets RomR to the poles and the receiver domain is essential for dynamic localization. The small GTPase MglA establishes correct RomR polarity, and the Frz two-component system regulates dynamic RomR localization. FrzS localizes with Tfp at the leading pole and relocates in an Frz-dependent manner to the opposite pole during reversals; FrzS and RomR localize and oscillate independently. The Frz system synchronizes these oscillations and thus the synchronous polarity switching of the motility machineries.  相似文献   

10.
The rod‐shaped cells of the bacterium Myxococcus xanthus move uni‐directionally and occasionally undergo reversals during which the leading/lagging polarity axis is inverted. Cellular reversals depend on pole‐to‐pole relocation of motility proteins that localize to the cell poles between reversals. We show that MglA is a Ras‐like G‐protein and acts as a nucleotide‐dependent molecular switch to regulate motility and that MglB represents a novel GTPase‐activating protein (GAP) family and is the cognate GAP of MglA. Between reversals, MglA/GTP is restricted to the leading and MglB to the lagging pole defining the leading/lagging polarity axis. For reversals, the Frz chemosensory system induces the relocation of MglA/GTP to the lagging pole causing an inversion of the leading/lagging polarity axis. MglA/GTP stimulates motility by establishing correct polarity of motility proteins between reversals and reversals by inducing their pole‐to‐pole relocation. Thus, the function of Ras‐like G‐proteins and their GAPs in regulating cell polarity is found not only in eukaryotes, but also conserved in bacteria.  相似文献   

11.
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.  相似文献   

12.

Type IV pilus (T4P) is widespread in bacteria, yet its biogenesis mechanism and functionality is only partially elucidated in a limited number of bacterial species. Here, by using strain OH11 as the model organism, we reported the identification of 26 T4P structural or functional component (SFC) proteins in the Gram-negative Lysobacter enzymogenes, which is a biocontrol agent potentially exploiting T4P-mediated twitching motility for antifungal activity. Twenty such SFC coding genes were individually knocked-out in-frame to create a T4P SFC deletion library. By using combined phenotypic and genetic approaches, we found that 14 such SFCs, which were expressed from four operons, were essential for twitching motility. These SFCs included the minor pilins (PilEi, PilXi, PilVi, and FimTi), the anti-retraction protein PilY1i, the platform protein PilC, the extension/extraction ATPases (PilB, PilT, and PilU), and the PilMNOPQ complex. Among these, mutation of pilT or pilU caused a hyper piliation, while the remaining 12 SFCs were indispensable for pilus formation. Ten (FimTi, PilY1i, PilB, PilT, PilU, and the PilMNOPQ complex) of the 14 SFC proteins, as well as PilA, were further shown to play a key role in L. enzymogenes biofilm formation. Overall, our results provide the first report to dissect the genetic basis of T4P biogenesis and its role in biofilm formation in L. enzymogenes in detail, which can serve as an alternative platform for studying T4P biogenesis and its antifungal function.

  相似文献   

13.
Coordinated movement of packs of S-motile Myxococcus xanthus cells relies on extrusion and retraction of pili that are located at one cell pole. At regular intervals the pili switch their polar location and cells reverse direction. Recently, the FrzS S-motility protein was observed to localize predominantly to the piliated pole. In time, FrzS was redeployed to the opposite pole and its sequestration at the new site coincided with cell reversal. The C-terminal region of FrzS, a response regulator homolog, is rich in coiled-coil motifs and is required for dynamic localization and proper motility. These results raise the possibility that proper spatial control of FrzS has an important role in the regulation of cell reversal and S-motility.  相似文献   

14.
How cells establish and dynamically change polarity are general questions in cell biology. Cells of the rod-shaped bacterium Myxococcus xanthus move on surfaces with defined leading and lagging cell poles. Occasionally, cells undergo reversals, which correspond to an inversion of the leading-lagging pole polarity axis. Reversals are induced by the Frz chemosensory system and depend on relocalization of motility proteins between the poles. The Ras-like GTPase MglA localizes to and defines the leading cell pole in the GTP-bound form. MglB, the cognate MglA GTPase activating protein, localizes to and defines the lagging pole. During reversals, MglA-GTP and MglB switch poles and, therefore, dynamically localized motility proteins switch poles. We identified the RomR response regulator, which localizes in a bipolar asymmetric pattern with a large cluster at the lagging pole, as important for motility and reversals. We show that RomR interacts directly with MglA and MglB in vitro. Furthermore, RomR, MglA, and MglB affect the localization of each other in all pair-wise directions, suggesting that RomR stimulates motility by promoting correct localization of MglA and MglB in MglA/RomR and MglB/RomR complexes at opposite poles. Moreover, localization analyses suggest that the two RomR complexes mutually exclude each other from their respective poles. We further show that RomR interfaces with FrzZ, the output response regulator of the Frz chemosensory system, to regulate reversals. Thus, RomR serves at the functional interface to connect a classic bacterial signalling module (Frz) to a classic eukaryotic polarity module (MglA/MglB). This modular design is paralleled by the phylogenetic distribution of the proteins, suggesting an evolutionary scheme in which RomR was incorporated into the MglA/MglB module to regulate cell polarity followed by the addition of the Frz system to dynamically regulate cell polarity.  相似文献   

15.
Type IV pilus (T4P) dynamics is important for various bacterial functions including host cell interaction, surface motility, and horizontal gene transfer. T4P retract rapidly by depolymerization, generating large mechanical force. The gene that encodes the pilus retraction ATPase PilT has multiple paralogues, whose number varies between different bacterial species, but their role in regulating physical parameters of T4P dynamics remains unclear. Here, we address this question in the human pathogen Neisseria gonorrhoeae, which possesses two pilT paralogues, namely pilT2 and pilU. We show that the speed of twitching motility is strongly reduced in a pilT2 deletion mutant, while directional persistence time and sensitivity of speed to oxygen are unaffected. Using laser tweezers, we found that the speed of single T4P retraction was reduced by a factor of ≈ 2 in a pilT2 deletion strain, whereas pilU deletion showed a minor effect. The maximum force and the probability for switching from retraction to elongation under application of high force were not significantly affected. We conclude that the physical parameters of T4P are fine‐tuned through PilT2.  相似文献   

16.
Type IV pili (Tfp) play central roles in prokaryotic cell biology and disease pathogenesis. As dynamic filamentous polymers, they undergo rounds of extension and retraction modelled as pilin subunit polymerization and depolymerization events. Currently, the molecular mechanisms and components influencing Tfp dynamics remain poorly understood. Using Neisseria gonorrhoeae as a model system, we show that mutants lacking any one of a set of five proteins sharing structural similarity to the pilus subunit are dramatically reduced in Tfp expression and that these defects are suppressed in the absence of the PilT pilus retraction protein. Thus, these molecules are not canonical assembly factors but rather act as effectors of pilus homeostasis by promoting extension/polymerization events in the presence of PilT. Furthermore, localization studies support the conclusion that these molecules form a Tfp-associated complex and influence levels of PilC, the epithelial cell adhesin, in Tfp-enriched shear fractions. This is the first time that the step at which individual pilin-like proteins impact on Tfp expression has been defined. The findings have important implications for understanding Tfp dynamics and fundamental Tfp structure/function relationships.  相似文献   

17.
The type IV pilus filament of Myxococcus xanthus penetrates the outer membrane through a gated channel--the PilQ secretin. Assembly of the channel and formation of PilQ multimeric complexes that resist disassembly in heated detergent is correlated with the release of a 50 kDa fragment of PilQ. Tgl lipoprotein is required for PilQ assembly in M. xanthus, because PilQ monomers but no heat and detergent-resistant complexes are present in a strain from which tgl has been deleted. PilQ protein is often found in single patches at both poles of the cell. Tgl, however, is found in a patch at only one pole that most likely identifies the piliated cell pole. Tgl protein that has been transferred from another cell by contact stimulation leads to secretin assembly in the recipient. Pilus proteins PilQ, PilG, PilM, PilN, PilO and PilP are also required for the donation of Tgl by contact stimulation to a stimulation recipient. We suggest that these proteins are parts of a polar superstructure that holds PilQ monomers in a cluster and ready for Tgl to bring about secretin assembly.  相似文献   

18.
The type IV pilus (T4P) system of Neisseria gonorrhoeae is the strongest linear molecular motor reported to date, but it is unclear whether high-force generation is conserved between bacterial species. Using laser tweezers, we found that the average stalling force of single-pilus retraction in Myxococcus xanthus of 149 ± 14 pN exceeds the force generated by N. gonorrhoeae. Retraction velocities including a bimodal distribution were similar between M. xanthus and N. gonorrhoeae, but force-dependent directional switching was not. Force generation by pilus retraction is energized by the ATPase PilT. Surprisingly, an M. xanthus mutant lacking PilT apparently still retracted T4P, although at a reduced frequency. The retraction velocity was comparable to the high-velocity mode in the wild type at low forces but decreased drastically when the force increased, with an average stalling force of 70 ± 10 pN. Thus, M. xanthus harbors at least two different retraction motors. Our results demonstrate that the major physical properties are conserved between bacteria that are phylogenetically distant and pursue very different lifestyles.Type IV pili (T4P) are among the most widespread cell surface appendages in bacteria and have been found in beta-, gamma-, delta-, and epsilonproteobacteria and cyanobacteria, as well as in firmicutes (27). As opposed to other filamentous surface structures, T4P are highly dynamic structures and undergo cycles of extension and retraction (22, 30, 34). During the retraction step, sufficient force is generated to pull a bacterial cell forward in a type of surface movement referred to as twitching motility (30). The dynamic behavior is central to most of the functions of T4P, which in addition to cell motility, include surface adhesion, horizontal gene transfer, biofilm formation, and protein secretion (3).T4P are thin (5- to 8-nm) flexible filaments with a length of several micrometers (7). A core set of 10 proteins is conserved between different T4P systems and is required for T4P dynamics in Myxococcus xanthus, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Neisseria meningitidis, and Synechocystis sp. strain PCC6803 (24, 27). Genetic and biochemical data suggest that the proteins required for T4P function interact to form a complex that spans the cell envelope (2, 9, 10, 14, 28). The molecular mechanism underlying the assembly of T4P involves the incorporation of pilin subunits in the base of the pilus (8) from a reservoir in the cytoplasmic membrane (15, 30), and retraction involves the removal and transfer of pilin subunits from the pilus base into the cytoplasmic membrane (23). Genetic and biochemical evidence suggest that assembly of T4P is energized by ATP hydrolysis by the assembly ATPase PilB (PilF in Neisseria spp.) (15, 29) and that T4P retraction is energized by ATP hydrolysis by the retraction ATPase PilT (5, 11, 15).The soil-dwelling bacterium M. xanthus (a rod-shaped bacterium belonging to the deltaproteobacteria) requires T4P-dependent motility for the formation of spreading colonies in vegetative cells and fruiting bodies in starving cells. T4P extension and retraction have not been quantified in M. xanthus; however, indirect evidence for T4P retraction was obtained by characterizing the “jiggling” movement of isolated, individual M. xanthus cells adhering to polystyrene-coated surfaces (34).The dynamics and force generation of individual T4P have been characterized in detail in the human pathogen N. gonorrhoeae (6, 19-21), a diplococcus belonging to the betaproteobacteria. Generation of high forces in the range of 110 pN is a remarkable quality of T4P retractions in N. gonorrhoeae (21). It has been suggested that high-force generation may have evolved with the “lifestyle” of N. gonorrhoeae to induce signaling processes in the host cells during infections and to induce cytoprotection and cytoskeletal rearrangements (13). Here, we show that T4P retractions in M. xanthus, which lives in an entirely different habitat, has a different morphology, and is phylogenetically distant from N. gonorrhoeae, generate high forces in the range of 150 pN. On the basis of these observations, we suggest that high-force generation and bimodal velocity distributions are inherent properties of all T4P systems independent of phylogeny and bacterial lifestyle. Intriguingly, retractions still occurred at a low frequency in an M. xanthus strain lacking PilT, providing evidence for a PilT-independent retraction mechanism in M. xanthus. The physical characteristics of the PilT-independent T4P retractions were distinct from those in a PilT+ strain.  相似文献   

19.
Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis‐like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF‐GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF‐GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号