首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein aggregation and amyloid formation are associated with both pathological conditions in humans such as Alzheimer's disease and native functions such as peptide hormone storage in the pituitary secretory granules in mammals. Here, we studied amyloid fibrils formation by three neuropeptides namely physalaemin, kassinin and substance P of tachykinin family using biophysical techniques including circular dichroism, thioflavin T, congo red binding and microscopy. All these neuropeptides under study have significant sequence similarity with Aβ(25-35) that is known to form neurotoxic amyloids. We found that all these peptides formed amyloid-like fibrils in vitro in the presence of heparin, and these amyloids were found to be nontoxic in neuronal cells. However, the extent of amyloid formation, structural transition, and morphology were different depending on the primary sequences of peptide. When Aβ(25-35) and Aβ40 were incubated with each of these neuropeptides in 1:1 ratio, a drastic increase in amyloid growths were observed compared to that of individual peptides suggesting that co-aggregation of Aβ and these neuropeptides. The electron micrographs of these co-aggregates were dissimilar when compared with individual peptide fibrils further supporting the possible incorporation of these neuropeptides in Aβ amyloid fibrils. Further, the fibrils of these neuropeptides can seed the fibrils formation of Aβ40 and reduced the toxicity of preformed Aβ fibrils. The present study of amyloid formation by tachykinin neuropeptides is not only providing an understanding of the mechanism of amyloid fibril formation in general, but also offering plausible explanation that why these neuropeptide might reduce the cytotoxicity associated with Alzheimer's disease related amyloids.  相似文献   

2.
Insights into the three-dimensional structure of hormone fibrils are crucial for a detailed understanding of how an amyloid structure allows the storage of hormones in secretory vesicles prior to hormone secretion into the blood stream. As an example for various hormone amyloids, we have studied the endogenous opioid neuropeptide β-endorphin in one of its fibril forms. We have achieved the sequential assignment of the chemical shifts of the backbone and side-chain heavy atoms of the fibril. The secondary chemical shift analysis revealed that the β-endorphin peptide adopts three β-strands in its fibril state. This finding fosters the amyloid nature of a hormone at the atomic level.  相似文献   

3.
Acylphosphatase can be converted in vitro, by addition of trifluoroethanol (TFE), into amyloid fibrils of the type observed in a range of human diseases. The propensity to form fibrils has been investigated for a series of mutants of acylphosphatase by monitoring the range of TFE concentrations that result in aggregation. We have found that the tendency to aggregate correlates inversely with the conformational stability of the native state of the protein in the different mutants. In accord with this, the most strongly destabilized acylphosphatase variant forms amyloid fibrils in aqueous solution in the absence of TFE. These results show that the aggregation process that leads to amyloid deposition takes place from an ensemble of denatured conformations under conditions in which non-covalent interactions are still favoured. These results support the hypothesis that the stability of the native state of globular proteins is a major factor preventing the in vivo conversion of natural proteins into amyloid fibrils under non-pathological conditions. They also suggest that stabilizing the native states of amyloidogenic proteins could aid prevention of amyloidotic diseases.  相似文献   

4.
Formation of senile plaques containing amyloid fibrils of Aβ (amyloid β-peptide) is a pathological hallmark of Alzheimer's disease. Unlike globular proteins, which fold into unique structures, the fibrils of Aβ and other amyloid proteins often contain multiple polymorphs. Polymorphism of amyloid fibrils leads to different toxicity in amyloid diseases and may be the basis for prion strains, but the structural origin for fibril polymorphism is still elusive. In the present study we investigate the structural origin of two major fibril polymorphs of Aβ40: an untwisted polymorph formed under agitated conditions and a twisted polymorph formed under quiescent conditions. Using electron paramagnetic resonance spectroscopy, we studied the inter-strand side-chain interactions at 14 spin-labelled positions in the Aβ40 sequence. The results of the present study show that the agitated fibrils have stronger inter-strand spin-spin interactions at most of the residue positions investigated. The two hydrophobic regions at residues 17-20 and 31-36 have the strongest interactions in agitated fibrils. Distance estimates on the basis of the spin exchange frequencies suggest that inter-strand distances at residues 17, 20, 32, 34 and 36?in agitated fibrils are approximately 0.2?? (1??=0.1?nm) closer than in quiescent fibrils. We propose that the strength of inter-strand side-chain interactions determines the degree of β-sheet twist, which then leads to the different association patterns between different cross β-units and thus distinct fibril morphologies. Therefore the inter-strand side-chain interaction may be a structural origin for fibril polymorphism in Aβ and other amyloid proteins.  相似文献   

5.
Protein aggregation is a problem with a multitude of consequences, ranging from affecting protein expression to its implication in many diseases. Of recent interest is the specific form of aggregation leading to the formation of amyloid fibrils, structures associated with diseases such as Alzheimer's disease. The ability to form amyloid fibrils is now regarded as a property generic to all polypeptide chains. Here we show that around the isoelectric point a different generic form of aggregation can also occur by studying seven widely different, nonrelated proteins that are also all known to form amyloid fibrils. Under these conditions gels consisting of relatively monodisperse spherical particulates are formed. Although these gels have been described before for beta-lactoglobulin, our results suggest that the formation of particulates in the regime where charge on the molecules is minimal is a common property of all proteins. Because the proteins used here also form amyloid fibrils, we further propose that protein misfolding into clearly defined aggregates is a generic process whose outcome depends solely on the general properties of the state the protein is in when aggregation occurs, rather than the specific amino acid sequence. Thus under conditions of high net charge, amyloid fibrils form, whereas under conditions of low net charge, particulates form. This observation furthermore suggests that the rules of soft matter physics apply to these systems.  相似文献   

6.
The process of amyloid fibril formation by the human calcitonin hormone is associated with medullary thyroid carcinoma. Based on the effect of pH on the fibrillization of human calcitonin, the analysis of conformationally constrained analogues of the hormone, and our suggestion regarding the role of aromatic residues in the process of amyloid fibril formation, we studied the ability of a short aromatic charged peptide fragment of calcitonin (NH(2)-DFNKF-COOH) to form amyloid fibrils. Here, using structural and biophysical analysis, we clearly demonstrate the ability of this short peptide to form well ordered amyloid fibrils. A shorter truncated tetrapeptide, NH(2)-DFNK-COOH, also formed fibrils albeit less ordered than those formed by the pentapeptide. We could not detect amyloid fibril formation by the NH(2)-FNKF-COOH tetrapeptide, the NH(2)-DFN-COOH tripeptide, or the NH(2)-DANKA-COOH phenylalanine to the alanine analogue of the pentapeptide. The formation of amyloid fibrils by rather hydrophilic peptides is quite striking, because it was speculated that hydrophobic interactions might play a key role in amyloid formation. This is the first reported case of fibril formation by a peptide as short as a tetrapeptide and one of very few cases of amyloid formation by pentapeptides. Because the aromatic nature seems to be the only common property of the various very short amyloid-forming peptides, it further supports our hypothesis on the role of aromatic interactions in the process of amyloid fibril formation.  相似文献   

7.
In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Although low pH or 2,2,2-trifluoroethanol at a low concentration has been reported to induce partial unfolding of beta2-m and subsequent amyloid fibril formation in vitro, factors that induce them under near physiological conditions have not been determined. Using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy, we here show that at low concentrations, sodium dodecyl sulfate (SDS) converts natively folded beta2-m monomers into partially folded, alpha-helix-containing conformers. Surprisingly, this results in the extension of Abeta2M amyloid fibrils at neutral pH, which could be explained basically by a first-order kinetic model. At low concentrations, SDS also stabilized the fibrils at neutral pH. These SDS effects were concentration-dependent and maximal at approximately 0.5 mM, around the critical micelle concentration of SDS (0.67 mM). As the concentration of SDS was increased above 1 mM, the alpha-helix content of beta2-m rose to approximately 10%, while the beta-sheet content decreased to approximately 20%, a change paralleled by a complete cessation of fibril extension and the destabilization of the fibrils. Detergents of other classes had no significant effect on the extension of fibrils. These findings are consistent with the hypothesis that in vivo, specific factors (e.g., phospholipids) that affect the conformation and stability of beta2-m and amyloid fibrils will have significant effects on the kinetics of Abeta2M fibril formation.  相似文献   

8.
We have examined the chemical dissection and subsequent reassembly of fibrils formed by a ten-residue peptide to probe the forces that drive the formation of amyloid. The peptide, TTR(10-19), encompasses the A strand of the inner beta-sheet structure that lines the thyroid hormone binding site of the human plasma protein transthyretin. When dissolved in water under low pH conditions the peptide readily forms amyloid fibrils. Electron microscopy of these fibrils indicates the presence of long (>1000 nm) rigid structures of uniform diameter (approximately 14 nm). Addition of urea (3 M) to preformed fibrils disrupts these rigid structures. The partially disrupted fibrils form flexible ribbon-like arrays, which are composed of a number of clearly visible protofilaments (3-4 nm diameter). These protofilaments are highly stable, and resist denaturation in 6 M urea at 75 degrees C over a period of hours. High concentrations (>50%, v/v) of 2,2,2-trifluoroethanol also dissociate TTR(10-19) fibrils to the constituent protofilaments, but these slowly dissociate to monomeric, soluble peptides with extensive alpha-helical structure. Dilution of the denaturant or co-solvent at the stage when dissociation to protofilaments has occurred results in the efficient reassembly of fibrils. These results indicate that assembly of fibrils from protofilaments involves relatively weak and predominantly hydrophobic interactions, whereas assembly of peptides into protofilaments involves both electrostatic and hydrophobic forces, resulting in a highly stable and compact structures.  相似文献   

9.
The mechanism by which proteins aggregate and form amyloid fibrils is still elusive. In order to preclude interference by cellular factors and to clarify the role of the primary sequence of Sup35p prion domain in formation of amyloid fibrils, we generated five Sup35NM variants by randomizing amino acid sequences in PrDs without altering the amino acid composition and analyzed the in vitro process of amyloid fibril formation. The results showed that each of the five Sup35NM variants polymerized into amyloid fibrils in vitro under native conditions. Furthermore, the Sup35NM variants showed differences in their aggregation time courses. These findings indicate that specific amino acid sequence features in PrD can modify the rate of conversion of Sup35p into amyloid fibrils in vitro.  相似文献   

10.
Transmissible spongiform encephalopathies are associated with conformational conversion of the cellular prion protein, PrP(C), into a proteinase K-resistant, amyloid-like aggregate, PrP(Sc). Although the structure of PrP(Sc) remains enigmatic, recent studies have afforded increasingly detailed characterization of recombinant PrP amyloid. However, all previous studies were performed using amyloid fibrils formed in the presence of denaturing agents that significantly alter the folding state(s) of the precursor monomer. Here we report that PrP amyloid can also be generated under physiologically relevant conditions, where the monomeric protein is natively folded. Remarkably, site-directed spin labeling studies reveal that these fibrils possess a beta-core structure nearly indistinguishable from that of amyloid grown under denaturing conditions, where the C-terminal alpha-helical domain of the PrP monomer undergoes major refolding to a parallel and in-register beta-structure upon conversion. The structural similarity of fibrils formed under drastically different conditions strongly suggests that the common beta-sheet architecture within the approximately 160-220 core region represents a distinct global minimum in the PrP conversion free energy landscape. We also show that the N-terminal region of fibrillar PrP displays conformational plasticity, undergoing a reversible structural transition with an apparent pK(a) of approximately 5.3. The C-terminal region, on the other hand, retains its beta-structure over the pH range 1-11, whereas more alkaline buffer conditions denature the fibrils into constituent PrP monomers. This profile of pH-dependent stability is reminiscent of the behavior of brain-derived PrP(Sc), suggesting a substantial degree of structural similarity within the beta-core region of these PrP aggregates.  相似文献   

11.
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.  相似文献   

12.
Despite possessing a common cross-beta core, amyloid fibrils are known to exhibit great variations in their morphologies. To date, the mechanism responsible for the polymorphism in amyloid fibrils is poorly understood. Here we report that two variants of mammalian full-length prion protein (PrP), hamster (Ha) and mouse (Mo) PrPs, produced morphologically distinguishable subsets of mature fibrils under identical solvent conditions. To gain insight into the origin of this morphological diversity we analyzed the early stages of polymerization. Unexpectedly, we found that despite a highly conserved amyloidogenic region (94% identity within the residues 90-230), Ha and Mo PrPs followed two distinct pathways for lateral assembly of protofibrils into mature, higher order fibrils. The protofibrils of Ha PrP first formed irregular bundles characterized by a peculiar palm-type shape, which ultimately condensed into mature fibrils. The protofibrils of Mo PrP, on the other hand, associated in pairs in a pattern resembling dichotomous coalescence. These pathways are referred to here as the palm-type and dichotomous mechanisms. Two distinct mechanisms for lateral assembly explain striking differences in morphology of mature fibrils produced from closely related Mo and Ha PrPs. Remarkable similarities between subtypes of amyloid fibrils generated from different proteins and peptides suggest that the two mechanisms of lateral assembly may not be limited to prion proteins but may be a common characteristic of polymerization of amyloidogenic proteins and peptides in general.  相似文献   

13.
14.
The molecular basis of fibril formation in Alzheimers disease was explored by electron micrographic and x-ray diffraction analysis of a series of synthetic peptides corresponding to portions of the amino acid sequence of beta protein and that of its putative precursor. A minimum 14 residue peptide was identified that formed typical amyloid fibrils under physiological conditions. Of these 14 residues, 10 were sufficient to give an identical 4.76 A and 10.6 A diffraction pattern as that recently described for isolated neurofibrillary tangles, amyloid plaque cores and leptomeningeal amyloid fibrils.  相似文献   

15.
Luo JC  Wang SC  Jian WB  Chen CH  Tang JL  Lee CI 《FEBS letters》2012,586(6):680-685
Fibril formation has been considered a significant feature of amyloid proteins. However, it has been proposed that fibril formation is a common property of many proteins under appropriate conditions. We studied the fibril formation of β-amylase, a non-amyloid protein rich in α-helical structure, because the secondary structure of β-amylase is similar to that of prions. With the conditions for the fibril formation of prions, β-amylase proteins were converted into amyloid fibrils. The features of β-amylase proteins and fibrils are compared to prion proteins and fibrils. Furthermore, the cause of neurotoxicity in amyloid diseases is discussed.  相似文献   

16.
Protein crystals form in supersaturated solutions via a nucleation and growth mechanism. The amyloid fibrils of denatured proteins also form via a nucleation and growth mechanism. This similarity suggests that, although protein crystals and amyloid fibrils are distinct in their morphologies, both processes can be controlled in a similar manner. It has been established that ultrasonication markedly accelerates the formation of amyloid fibrils and simultaneously breaks them down into fragmented fibrils. In this study, we investigated the effects of ultrasonication on the crystallization of hen egg white lysozyme and glucose isomerase from Streptomyces rubiginosus. Protein crystallization was monitored by light scattering, tryptophan fluorescence, and light transmittance. Repeated ultrasonic irradiations caused the crystallization of lysozyme and glucose isomerase after cycles of irradiations. The size of the ultrasonication-induced crystals was small and homogeneous, and their numbers were larger than those obtained under quiescent conditions. Switching off ultrasonic irradiation when light scattering or tryptophan fluorescence began to change resulted in the formation of larger crystals due to the suppression of the further nucleation and fractures in preformed crystals. The results indicate that protein crystallization and amyloid fibrillation are explained on the basis of a common phase diagram in which ultrasonication accelerates the formation of crystals or crystal-like amyloid fibrils as well as fragmentation of preformed crystals or fibrils.  相似文献   

17.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

18.
A region near the C-terminus of human acetylcholinesterase (AChE) is weakly homologous with the N-terminus of the Alzheimer's disease amyloid-beta peptide. We report that a 14-amino acid synthetic polypeptide whose sequence corresponds to residues 586-599 of the human synaptic or T form of AChE assembles into amyloid fibrils under physiological conditions. The fibrils have all the classical characteristics of amyloid: they have a diameter of 6-7 nm and bind both Congo red and thioflavin-T. Furthermore, the kinetics of assembly indicate that fibril formation proceeds via a two-step nucleation-dependent polymerization pathway, and a transition in the peptide conformation from random coil to beta-sheet is observed during fibril formation using far-UV circular dichroism spectroscopy. We also show that the peptide in aggregated fibrillar form has a toxic effect upon PC-12 cells in vitro. AChE normally resides mainly on cholinergic neuronal membranes, but is abnormally localized to senile plaques in Alzheimer's disease. Recently, an in vitro interaction between AChE and A beta, the principal constituent of the amyloid fibrils in senile plaques, has been documented. The presence of a fibrillogenic region within AChE may be relevant to the interaction of AChE with amyloid fibrils formed by Abeta.  相似文献   

19.
To understand and tackle amyloid-related diseases, it is crucial to investigate the factors that modulate amyloid formation of proteins. Our previous studies proved that the N47A mutant of the α-spectrin SH3 (Spc-SH3) domain forms amyloid fibrils quickly under mildly acidic conditions. Here, we analyze how experimental conditions influence the kinetics of assembly and the final morphology of the fibrils. Early formation of curly fibrils occurs after a considerable conformational change of the protein and the concomitant formation of small oligomers. These processes are strongly accelerated by an increase in salt concentration and temperature, and to a lesser extent by a reduction in pH. The rate-limiting step in these events has a high activation enthalpy, which is significantly reduced by an increase in NaCl concentration. At low-to-moderate NaCl concentrations, the curly fibrils convert to straight and twisted amyloid fibrils after long incubation times, but only in the presence of soluble species in the mixture, which suggests that the curly fibrils and the twisted amyloid fibrils are diverging assembly pathways. The results suggest that the influence of environmental variables on protein solvation is crucial in determining the nucleation kinetics, the pathway of assembly, and the final fibril morphology.  相似文献   

20.
Beta2-microglobulin (beta2-m), a major component of dialysis-related amyloid fibrils, has an intrachain disulfide bond buried inside the native structure. We examined the conformation of beta2-m amyloid fibrils by analyzing the reactivity of the disulfide bond to a reducing reagent, dithiothreitol. Although the disulfide bond in the native structure was highly protected from reduction, the disulfide bonds in the amyloid fibrils prepared at pH 2.5 were progressively reduced at pH 8.5 by 50 mm dithiothreitol. Because beta2-m amyloid fibrils prepared under acidic conditions have been known to depolymerize at a neutral pH, we examined the relation between depolymerization and reduction of the disulfide bond. The results indicate that the disulfide bonds in the amyloid fibrils were protected from reduction, and the reduction occurred during depolymerization. On the other hand, the disulfide bonds of immature filaments, the thin and flexible filaments prepared under conditions of high salt at pH 2.5, were reduced at pH 8.5 more readily than those of amyloid fibrils, suggesting that the disulfide bonds are exposed to the solvent. Taken together, the disulfide bond once exposed to the solvent upon acid denaturation may be progressively buried in the interior of the amyloid fibrils during its formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号