首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Durham  L P Pan  J E Long  F Millett 《Biochemistry》1989,28(21):8659-8665
Cytochrome c derivatives labeled at specific lysine amino groups with ruthenium bis(bipyridine) dicarboxybipyridine [RuII(bpy)2(dcbpy)] were prepared by using the procedure described previously [Pan, L. P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Four additional singly labeled derivatives were purified, bringing the total number to 10. These derivatives have a strong luminescence emission centered at 662 nm arising from the excited state, RuII*. Transient absorption spectroscopy was used to directly measure the rate constants for the photoinduced electron-transfer reaction from RuII* to the ferric heme group (k1) and for the thermal back-reaction from the ferrous heme group to RuIII (k2). The rate constants were found to be k1 = 14 X 10(6) s-1 and k2 = 24 X 10(6) s-1 for the derivative modified at lysine 72, which has a distance of 8-16 A between the ruthenium and heme groups. Similar rate constants were found for the derivatives modified at lysines 13 and 27, which have distances of 6-12 A separating the ruthenium and heme groups. The rate constants were significantly slower for the derivatives modified at lysine 25 (k1 = 1 X 10(6) s-1, k2 = 1.5 X 10(6) s-1) and lysine 7 (k1 = 0.3 X 10(6) s-1, k2 = 0.5 X 10(6) s-1), which have distances of 9-16 A. Transients due to photoinduced electron transfer could not be detected for the remaining derivatives, which have larger distances between the ruthenium and heme groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

3.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Amidolytic assays have been developed to determine factor XIIa, factor XIa and plasma kallikrein in mixtures containing variable amounts of each enzyme. The commercially available chromogenic p-nitroanilide substrates Pro-Phe-Arg-NH-Np (S2302 or chromozym PK), Glp-Pro-Arg-NH-Np (S2366), Ile-Glu-(piperidyl)-Gly-Arg-NH-Np (S2337), and Ile-Glu-Gly-Arg-NH-Np (S2222) were tested for their suitability as substrates in these assays. The kinetic parameters for the conversion of S2302, S2222, S2337 and S2366 by beta factor XIIa, factor XIa and plasma kallikrein indicate that each active enzyme exhibits considerable activity towards a number of these substrates. This precludes direct quantification of the individual enzymes when large amounts of other activated contact factors are present. Several serine protease inhibitors have been tested for their ability to inhibit those contact factors selectively that may interfere with the factor tested for. Soybean trypsin inhibitor very efficiently inhibited kallikrein, inhibited factor XIa at moderate concentrations, but did not affect the amidolytic activity of factor XIIa. Therefore, this inhibitor can be used to abolish a kallikrein and factor XIa contribution in a factor XIIa assay. We also report the rate constants of inhibition of contact activation factors by three different chloromethyl ketones. D-Phe-Pro-Arg-CH2Cl was moderately active against contact factors (k = 2.2 X 10(3) M-1 s-1 at pH 8.3) but showed no differences in specifity. D-Phe-Phe-Arg-CH2Cl was a very efficient inhibitor of plasma kallikrein (k = 1.2 X 10(5) M-1 s-1 at pH 8.3) whereas it slowly inhibited factor XIIa (k = 1.4 X 10(3) M-1 s-1) and factor XIa (k = 0.11 X 10(3) M-1 s-1). Also Dns-Glu-Gly-Arg-CH2Cl was more reactive towards kallikrein (k = 1.6 X 10(4) M-1 s-1) than towards factor XIIa (k = 4.6 X 10(2) M-1 s-1) and factor XIa (k = 0.6 X 10(2) M-1 s-1). Since Phe-Phe-Arg-CH2Cl is highly specific for plasma kallikrein it can be used in a factor XIa assay selectively to inhibit kallikrein. Based on the catalytic efficiencies of chromogenic substrate conversion and the inhibition characteristics of serine protease inhibitors and chloromethyl ketones we were able to develop quantitative assays for factor XIIa, factor XIa and kallikrein in mixtures of contact activation factors.  相似文献   

5.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The reactivity of cuprous stellacyanin as a quinone and semiquinone reductase has been examined. Rate constants (25.0 degrees C) measured for the oxidation of stellacyanin by 1,4-benzoquinone and benzosemiquinone are 2.3 X 10(4) M-1 s-1 (delta H not equal to = 4.4 kcal/mol, delta S not equal to = -24 eu) and 5.1 X 10(6) M-1 s-1, respectively [pH 7.0, I = 0.1 M (phosphate)]. The agreement of these rate constants with those calculated on the basis of relative Marcus theory is discussed. Stellacyanin is more effective than laccase in quenching benzosemiquinone, suggesting that the physiological role of this metalloprotein is to regulate the concentration of free radicals generated through the laccase-catalyzed oxidation of phenols.  相似文献   

7.
D Y Cai  M Tien 《Biochemistry》1990,29(8):2085-2091
The oxycomplexes (compound III, oxyperoxidase) of two lignin peroxidase isozymes, H1 (pI = 4.7) and H8 (pI = 3.5), were characterized in the present study. After generation of the ferroperoxidase by photochemical reduction with deazoflavin in the presence of EDTA, the oxycomplex is formed by mixing ferroperoxidase with O2. The oxycomplex of isozyme H8 is very stable, with an autoxidation rate at 25 degrees C too slow to measure at pH 3.5 or 7.0. In contrast, the oxycomplex of isozyme H1 has a half-life of 52 min at pH 4.5 and 29 min at pH 7.5 at 25 degrees C. The decay of isozyme H1 oxycomplex follows a single exponential. The half-lives of lignin peroxidase oxycomplexes are much longer than those observed with other peroxidases. The binding of O2 to ferroperoxidase to form the oxycomplex was studied by stopped-flow methods. At 20 degrees C, the second-order rate constants for O2 binding are 2.3 X 10(5) and 8.9 X 10(5) M-1 s-1 for isozyme H1 and 6.2 X 10(4) and 3.5 X 10(5) M-1 s-1 for isozyme H8 at pH 3.6 and pH 6.8, respectively. The dissociation rate constants for the oxycomplex of isozyme H1 (3.8 Z 10(-3) s-1) and isozyme H8 (1.0 X 10(-3) s-1) were measured at pH 3.6 by CO trapping. Thus, the equilibrium constants (K, calculated from kon/koff) for both isozymes H1 (7.0 X 10(7) M-1) and H8 (6.2 X 10(7) M-1) are higher than that of myoglobin (1.9 Z 10(6) M-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
J Tsuzuki  J A Kiger 《Biochemistry》1978,17(15):2961-2970
Cyclic AMP-dependent protein kinase and its regulatory subunit were isolated from Drosophila melanogaster embryos. The profiles of cyclic AMP binding by these proteins were significantly different. In order to explain such a difference and to find the mode of enzyme activation by cyclic AMP, a kinetic study of cyclic AMP binding was carried out. First, the association rate constant k1 and dissociation rate constant k-1 in the cyclic AMP-regulatory subunit interaction at 0 degrees C were estimated to be 2.3 X 10(6)M-1s-1 and 1.1 X 10(-3)s-1, respectively. Secondly, the three possible modes of enzyme activation by cyclic AMP were mathematically considered and could be described by a unique formula: r=APt + BQt (A + B=1) in which the parameters A, B, P, and Q are equivalent to rate constants in the sense that the rate constants are simply expressed by these parameters. Thirdly, the values of the parameters and subsequently the values of rate constants involved in the possible mechanisms were evaluated using a curve-fitting technique and compared with experimental observation. It was then found that the following mechanism was the only one which fitted the experimental observations. Namely, RC + L k3 equilibrium k-3 LRC k4 equilibrium k-4 RL + C where R, C, and L represent the regulatory and catalytic subunits and cyclic AMP as a ligand. Thus, our results indicate that in the presence of cyclic AMP the active enzyme (C) is released from a ternary intermediate which is the primary product of the cyclic AMP-holoenzyme interaction. The estimated values of the rate constants are: k3=3.5 X 10(6)M-1s-1;k-3=7.3 X 10(-1)s-1;and k4=3.8 X 10(-2)s. These estimates indicate that the reaction LRC leads to RL + C is relatively slow and limits the rate of the overall reaction. By comparing k-3 and k4, it is apparent that a large part of newly formed ternary intermediate reverts to the holoenzyme.  相似文献   

9.
NADH oxidation by quinone electron acceptors   总被引:1,自引:0,他引:1  
The rate constants of NADH oxidation by quinones are increased with the oxidation potential increase: log kox (M-1 X s-1) = -0.25 + 12.2 E0(7) (V) for o-quinones and log kox (M-1 X s-1) = -3.06 + 13.5 E0(7) (V) for p-quinones (pH 7.0, 25 degrees C). It is assumed that the oxidation proceeds via the hydride-ion transfer. The rate constants of NADH oxidation by single-electron quinone acceptors are also increased with the oxidizer potential increase; log kox (M-1 X s-1) = -0.64 + 9.34 E0(7) (V) and correlate with the constants of NADH oxidation by quinone radicals obtained earlier (Grodkowski, J., Neta, P., Carlson, B.W. and Miller, L. (1983) J. Phys. Chem. 87, 3135-3138). Single-electron transfer is the limiting stage of the process.  相似文献   

10.
Horse blood leucocyte cytosol exhibits a broad inhibitory activity against serine proteinases. The purified inhibitor was exposed to investigated enzymes (trypsin, chymotrypsin, elastases and serine proteinase from S. aureus) for variable time and the products were analyzed by gradient polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The molar ratio I:E, association rate constants k on and inhibition constants Ki for the enzymes and inhibitor were determined. The examined elastases form stable, stoichiometric complexes with the inhibitor (Ki less than 10(-10) M), and do not undergo proteolytic degradation during 30 min incubation at 20 degrees C even at the 2-fold molar excess of the proteinases. The reactions with elastases are extremely rapid (k on greater than 10(7) M-1 s-1) and are completed within one second whereas similar reactions with chymotrypsin and trypsin are much slower (k on = 3 X 10(5) M-1 s-5 and 5 X 10(2) M-1 s-1, respectively). Serine proteinase from S. aureus neither react nor inactivates the investigated inhibitor. The complexes of the inhibitor with trypsin and chymotrypsin are digested even at a molar ratio I:E = 2:1. All these observations point out that the inhibitor from horse leucocyte cytosol is a specific and effective inhibitor of elastases.  相似文献   

11.
U B Goli  R E Galardy 《Biochemistry》1986,25(22):7136-7142
Five phosphorus-containing inhibitors of angiotensin converting enzyme were found to exhibit slow, tight-binding kinetics by using furanacryloyl-L-phenylalanylglycylglycine as substrate at pH 7.50 and T = 25 degrees C. Two of the inhibitors, (O-ethylphospho)-Ala-Pro (2) and (O-isopropylphospho)-Ala-Pro (3), are found to follow at minimum a two-step mechanism of binding (mechanism B) to the enzyme. This mechanism consists of an initial fast formation of a weaker enzyme-inhibitor complex (Ki = 130 nM for 2 and 180 nM for 3) followed by a slow reversible isomerization to a tighter complex with measurable forward (K3) and reverse (k4) rate constants (k3 = 4.5 X 10(-2) s-1 for 2 and 5.4 X 10(-2) s-1 for 3; k4 = 9.2 X 10(-3) s-1 for 2 and 3.5 X 10(-3) s-1 for 3). For the remaining three inhibitors, phospho-Ala-Pro (1), (O-benzyl-phospho)-Ala-Pro (4), and (P-phenethylphosphono)-Ala-Pro (5), a one-step binding mechanism (mechanism A) is observed under the conditions of the experiment. The second-order rate constants k1 (M-1 s-1) for the binding of these inhibitors to converting enzyme are found to have values more than 3 orders of magnitude lower than the diffusion-controlled limit for a bimolecular reaction involving the enzyme, viz., 3.9 X 10(5) for 1, 2.2 X 10(5) for 4, and 4.8 X 10(5) for 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A Cornélis  P Laszlo 《Biochemistry》1979,18(10):2004-2007
In ethanol-water mixtures (90:10), the gramicidin dimer binds Na+ cations at well-defined sites, with a binding constant K = 4 M-1. Partial desolvation of Na+ occurs upon binding, as judged from the magnitude of the quadrupolar coupling constant (1.7 MHz) for bound sodium. The binding sites are identified with the outer sites flanking the channel entrances. The rate constants for binding and release are k+ less than or equal to 2.2 X 10(9) M-1 s-1 and k- less than or equal to 5.5 X 10(8) s-1, respectively.  相似文献   

13.
We used a fluorescence method to measure the rate constants for the elongation of pyrene-labeled actin filaments in a number of different solvents. The absolute values of the rate constants were established by electron microscopy. Using glycerol, sucrose, or ethylene glycol to vary the solution viscosity, the association rate constant (k+) was 10(7) M-1 s-1 viscosity-1 (in centipoise). Consequently, plots of 1/k+ versus viscosity are linear and extrapolate to near the origin as expected for a diffusion-limited reaction where the rate constant approaches infinity at zero viscosity. By electron microscopy, we found that this inhibitory effect of glycerol is almost entirely at the fast growing, barbed end. For the pointed end, plots of 1/k+ versus viscosity extrapolate to a maximum rate of about 10(6) M-1 s-1 at zero viscosity, so that elongation at the pointed is not limited by diffusion. In contrast to these small molecules, polyethylene glycol, dextran, and ovalbumin all cause a concentration (and therefore viscosity)-dependent increase in k+. At any given viscosity, their effects are similar to each other. For example, at 3 centipoise, k+ = 2.2 X 10(7) M-1 s-1. We presume that this is due to an excluded volume effect that causes an increase in the thermodynamic activity of the actin. If the proteins in the cytoplasmic matrix have a similar effect, the association reactions of actin in cells may be much faster than expected from experiments done in dilute buffers.  相似文献   

14.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

15.
Exchange rates were calculated as a function of pH from line widths of methylamine resonances in 13C-NMR spectra of N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine (TML) and N epsilon,N epsilon,N alpha,N alpha-tetramethyllysine methyl ester (TMLME). The pH dependence of the dimethyl alpha-amine exchange rate could be adequately described by assuming base-catalyzed chemical exchange between two diastereotopic methyl populations related by nitrogen inversion. Deprotonation of the alpha-amine was assumed to occur by proton transfer to (1) OH-, (2) water, (3) a deprotonated amine or (4) RCO2-. Microscopic rate constants characterizing each of these transfer processes (k1, k2, k3 and k4, respectively) were determined by fitting the rates calculated from line width analysis to a steady-state kinetic model. Using this procedure it was determined that for both TML and TMLME k2 approximately equal to 1-10 M-1 s-1, k3 approximately equal to 10(6) M-1 s-1 and ki, the rate constant for nitrogen inversion was about 10(8)-10(9) s-1. Upper limits of 10(12) and 10(3) M-1 s-1 could be determined for k1 and k4, respectively. A similar kinetic analysis was used to explain pH-dependent line-broadening effects observed for the N-terminal dimethylalanyl resonance in 13C-NMR spectra of concanavalin A, reductively methylated using 90% [13C]formaldehyde. From exchange data below pH 4 it could be determined that amine inversion was limited by the proton transfer rate to the solvent, with a rate constant estimated at 20 M-1 s-1. Above pH 4, exchange was limited by proton transfer to other titrating groups in the protein structure. Based upon their proximity, the carboxylate side chains of Asp-2 and Asp-218 appear to be likely candidates. The apparent first-order microscopic rate constant characterizing proton transfer to these groups was estimated to be about 1 X 10(4) s-1. Rate constants characterizing nitrogen inversion (ki), proton transfer to OH- (k1) and proton transfer to the solvent (k2) were estimated to be of the same order of magnitude as those determined for the model compounds. On the basis of our results, it is proposed that chemical exchange processes associated with base-catalyzed nitrogen inversion may contribute to 15N or 13C spin-lattice relaxation times in reductively methylated peptides or proteins.  相似文献   

16.
The photophysics of the complex forming reaction of Ca2+ and Fura-2 are investigated using steady-state and time-resolved fluorescence measurements. The fluorescence decay traces were analyzed with global compartmental analysis yielding the following values for the rate constants at room temperature in aqueous solution with BAPTA as Ca2+ buffer: k01 = 1.2 x 10(9)s-1, k21 = 1.0 x 10(11) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 2.2 x 10(7) s-1, and with EGTA as Ca2+ buffer: k01 = 1.4 x 10(9) s-1, k21 = 5.0 x 10(10) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 3.2 x 10(7) s-1. k01 and k02 denote the respective deactivation rate constants of the Ca2+ free and bound forms of Fura-2 in the excited state. k21 represents the second-order rate constant of binding of Ca2+ and Fura-2 in the excited state, whereas k12 is the first-order rate constant of dissociation of the excited Ca2+:Fura-2 complex. The ionic strength of the solution was shown not to influence the recovered values of the rate constants. From the estimated values of k12 and k21, the dissociation constant K*d in the excited state was calculated. It was found that in EGTA Ca2+ buffer pK*d (3.2) is smaller than pKd (6.9) and that there is negligible interference of the excited-state reaction with the determination of Kd and [Ca2+] from fluorimetric titration curves. Hence, Fura-2 can be safely used as an Ca2+ indicator. From the obtained fluorescence decay parameters and the steady-state excitation spectra, the species-associated excitation spectra of the Ca2+ free and bound forms of Fura-2 were calculated at intermediate Ca2+ concentrations.  相似文献   

17.
In order to identify the regions of recombinant (r) tissue plasminogen activator (tPA) that mediate its kinetically relevant interaction with r-plasminogen activator inhibitor-1 (rPAI-1), we have determined the second-order association rate (k1) constants of domain-altered variants of tPA with rPAI-1, at 10 degrees C. With two-chain, wild-type recombinant tPA (tcwt-rtPA), obtained by expression of the human cDNA for tPA in five different cell systems (viz. insect cells, human kidney 293 cells, Chinese hamster ovary cells, human melanoma cells, and mouse C127 cells), the average k1 was 1.45 x 10(7) M-1 s-1 (range, 1.34 10(7) M-1 s-1-1.68 x 10(7) M-1 s-1). Since this value was not significantly different for the different tcwt-rtPA preparations, it appears as though the nature of the glycosylation of tPA plays little role in its initial interaction with PAI-1. The k1 determined for tcwt-rtPA was slightly higher than that of 0.87 x 10(7) M-1 s-1, obtained for a similar inhibition of human urokinase by rPAI-1. The k1 value obtained for single-chain (sc) wt-rtPA was approximately 6-fold lower than that of the two-chain molecules, results consistent with previous conclusions on this matter. The k1 value for tcwt-rtPA was not influenced by the presence of epsilon-aminocaproic acid, suggesting that the lysine-binding site associated with the kringle 2 (K2) region of tPA does not modulate the rate of its initial interaction with rPAI-1. Removal of the K2 domain from tPA, by recombinant DNA technology, results in a protein, F-E-K1-P (tc-r delta K2-tPA), containing only the finger (F), growth factor (E), kringle 1 (K1), and serine protease (P) domains. This variant protein was more rapidly inhibited by rPAI-1 (k1 = 3.00 x 10(7) M-1 s-1) than its wild-type counterparts. Deletion of both the K1 and K2 domains resulted in a variant molecule, F-E-P (tc-r delta K1 delta K2-tPA), that was slightly more rapidly inhibited by rPAI-1 (k1 = 2.01 x 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In addition to steady-state properties of calcium binding to parvalbumins, kinetic studies are required for adequate evaluation of the physiological roles of parvalbumins. By using a dual-wavelength spectrophotometer equipped with a stopped-flow accessory, the transient kinetics of calcium binding to parvalbumins (PA-1 and 2) from bullfrog skeletal muscle was examined at 20 degrees C in medium containing 20 mM MOPS-KOH, pH 6.80, 0.13 mM tetramethylmurexide, 25 microM CaCl2, metal-deprived PA-1 or PA-2, various concentrations of Mg2+, and KCl to adjust the ionic strength of the medium to 0.106. The results can be explained in terms of the following rate constants under the conditions mentioned above when a second-order kinetic scheme is assumed. For PA-1, the association and apparent dissociation rate constants for Ca2+ are 1.5 X 10(7) M-1 X s-1 and 1.5 s-1, respectively, or more. The rate constants for Mg2+ are 7,500 M-1 X s-1 and 5-6 s-1, respectively. For PA-2, the rate constants for Ca2+ are 7 X 10(6) M-1 X s-1 and 1.16 s-1, respectively, and those for Mg2+ are 3,500 M-1 X s-1 and 3.5-4 s-1, respectively. Increased affinities for Ca2+ and Mg2+ at 10 degrees C are largely due to decreased apparent dissociation rate constants for these divalent cations, because no significant change in the association rate constants was found.  相似文献   

19.
R Koren  G G Hammes 《Biochemistry》1976,15(5):1165-1171
Kinetic studies have been carried out of the monomer-dimer interaction of insulin, beta-lactoglobulin, and alpha-chymotrypsin using stopped-flow and temperature-jump techniques. The pH indicators bromothymol blue, bromophenol blue, and phenol red were used to monitor pH changes associated with the monomer-dimer interaction. In all three cases a kinetic process was observed which could be attributed to a simple monomer-dimer equilibrium, and association (k1) and dissociation (k-1) rate constants were determined. The results obtained are as follows: for insulin at 23 degrees C, pH 6.8, 0.125 M KNO3, k1 = 1.14 X 10(8) M-1 s-1, k-1 - 1.48 X 10(4)s(-1); for beta-lactoglobulin AB at 35 degrees C, pH 3.7, 0.025 M KNO3, d1 = 4.7 X 10(4) M-1 s-1, k-1 = 2.1 s-1; for alpha-chymotrypsin at 25 degreesC, pH 4.3, 0.05 M KNO3 k1 - 3.7 X 10(3) M-1 s-1, k-1 - 0.68 s-1. The kinetic behavior of the separated beta-lactoglobulin A and B was similar to that of the mixture. In the case of chymotrypsin, bromophenol blue was found to activate the enzyme catalyzed hydrolysis of p-nitrophenyl acetate, and a rate process was observed with the temperature jump which could be attributed to a conformational change of the indicator-protein complex. The association rate constant for dimer formation of insulin approaches the value expected for a diffusion-controlled process, while the values obtained for the other two proteins are below those expected for a diffusion-controlled reaction unless unusally large steric and electrostatic effects are present.  相似文献   

20.
Dissociation constants of cytokinins, derivatives of purine which form complexes with cupric ion, were determined by spectrophotometry and the stability constants of their copper complexes by pH titration. The values found for kinetin were 3.76, 9.96, 7.8, and 15.3 for pK1, pK2, logk1, and log beta 2, respectively, and those for 6-benzylaminopurine were, in the same order, 3.90, 9.84, 8.3, and 15.9. The copper(II) complexes with kinetin and 6-benzylaminopurine had superoxide dismutase mimetic activity, and the reaction rate constants with superoxide, which were determined by polarography, were 2.3 X 10(-7) M-1 s-1 for kinetin and 1.5 X 10(-7) M-1 s-1 for 6-benzylaminopurine at pH 9.8 and 25 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号