首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential membrane fusion apparatus in mammalian cells, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consists of four alpha-helices formed by three proteins: SNAP-25, syntaxin 1, and synaptobrevin 2. SNAP-25 contributes two helices to the complex and is targeted to the plasma membrane by palmitoylation of four cysteines in the linker region. It is alternatively spliced into two forms, SNAP-25a and SNAP-25b, differing by nine amino acids substitutions. When expressed in chromaffin cells from SNAP-25 null mice, the isoforms support different levels of secretion. Here, we investigated the basis of that different secretory phenotype. We found that two nonconservative substitutions in the N-terminal SNARE domain and not the different localization of one palmitoylated cysteine cause the functional difference between the isoforms. Biochemical and molecular dynamic simulation experiments revealed that the two substitutions do not regulate secretion by affecting the property of SNARE complex itself, but rather make the SNAP-25b-containing SNARE complex more available for the interaction with accessory factor(s).  相似文献   

2.
The SNARE complex, consisting of synaptobrevin, syntaxin, and SNAP-25, is essential for calcium-triggered exocytosis in neurosecretory cells. Little is known, however, about how developmentally regulated isoforms and other cognate SNARE components regulate vesicular fusion. To address this question, we examined neuroexocytosis from chromaffin cells of Snap25 null mice rescued by the two splice variants SNAP-25a and SNAP-25b and the ubiquitously expressed homolog SNAP-23. In the absence of SNAP-25, vesicle docking persisted, but primed vesicle pools were empty and fast calcium-triggered release abolished. Single vesicular fusion events showed normal characteristics, except for a shorter duration of the fusion pore. Overexpression of SNAP-25a, SNAP-25b, and SNAP-23 resulted in three distinct phenotypes; SNAP-25b induced larger primed vesicle pools than SNAP-25a, whereas SNAP-23 did not support a standing pool of primed vesicles. We conclude that three alternative SNARE components support exocytosis, but they differ in their ability to stabilize vesicles in the primed state.  相似文献   

3.
Botulinum neurotoxin serotypes A and E (BoNT/A and BoNT/E) block neurotransmitter release by cleaving the 206-amino-acid SNARE protein, SNAP-25. For each BoNT serotype, cleavage of SNAP-25 results in the loss of intact protein, the production of an N-terminal truncated protein, and the generation of a small C-terminal peptide. Peptides that mimic the C-terminal fragments of SNAP-25 following BoNT/A or BoNT/E cleavage were shown to depress transmitter release in bovine chromaffin cells and in Aplysia buccal ganglion cells. Similarly, the N-terminal–truncated SNAP-25 resulting from BoNT/A or BoNT/E cleavage has been found to inhibit transmitter exocytosis in various systems. With one exception, however, the inhibitory action of truncated SNAP-25 has not been demonstrated at a well-defined cholinergic synapse. The goal of the current study was to determine the level of inhibition of neurotransmitter release by N-terminal BoNT/A- or BoNT/E-truncated SNAP-25 in two different neuronal systems: cholinergically coupled Aplysia neurons and rat hippocampal cell cultures. Both truncated SNAP-25 products inhibited depolarization-dependent glutamate release from hippocampal cultures and depressed synaptic transmission in Aplysia buccal ganglion cells. These results suggest that truncated SNAP-25 can compete with endogenous SNAP-25 for binding with other SNARE proteins involved in transmitter release, thus inhibiting neurotransmitter exocytosis.  相似文献   

4.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

5.
Vesicle fusion in eukaryotic cells is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). In neurons, the t-SNARE SNAP-25 is essential for synaptic vesicle fusion but its exact role in this process is unknown. We have isolated a SNAP-25 temperature-sensitive paralytic mutant in Drosophila, SNAP-25(ts). The mutation causes a Gly50 to Glu change in SNAP-25's first amphipathic helix. A similar mutation in the yeast homologue SEC9 also results in temperature sensitivity, implying a conserved role for this domain in secretion. In vitro-generated 70 kDa SNARE complexes containing SNAP-25(ts) are thermally stable but the mutant SNARE multimers (of approximately 120 kDa) rapidly dissociate at 37 degrees C. The SNAP-25(ts) mutant has two effects on neurotransmitter release depending upon temperature. At 22 degrees C, evoked release of neurotransmitter in SNAP-25(ts) larvae is greatly increased, and at 37 degrees C, the release of neurotransmitter is reduced as compared with controls. Our data suggest that at 22 degrees C the mutation causes the SNARE complex to be more fusion competent but, at 37 degrees C the same mutation leads to SNARE multimer instability and fusion incompetence.  相似文献   

6.
SNAP-25 is a component of the SNARE complex implicated in synaptic vesicle exocytosis. In this study, we demonstrate that hippocampal GABAergic synapses, both in culture and in brain, lack SNAP-25 and are resistant to the action of botulinum toxins type A and E, which cleave this SNARE protein. Relative to glutamatergic neurons, which express SNAP-25, GABAergic cells were characterized by a higher calcium responsiveness to depolarization. Exogenous expression of SNAP-25 in GABAergic interneurons lowered calcium responsiveness, and SNAP-25 silencing in glutamatergic neurons increased calcium elevations evoked by depolarization. Expression of SNAP-25(1-197) but not of SNAP-25(1-180) inhibited calcium responsiveness, pointing to the involvement of the 180-197 residues in the observed function. These data indicate that SNAP-25 is crucial for the regulation of intracellular calcium dynamics and, possibly, of network excitability. SNAP-25 is therefore a multifunctional protein that participates in exocytotic function both at the mechanistic and at the regulatory level.  相似文献   

7.
rbSec1 is a mammalian neuronal protein homologous to the yeast SEC1 gene product which is required for exocytosis. Mutations in Sec1 homologues in the nervous systems of C. elegans and D. melanogaster lead to defective neurotransmitter secretion. Biochemical studies have shown that recombinant rbSec1 binds syntaxin 1 but not SNAP-25 or synaptobrevin/VAMP, the two proteins which together with syntaxin 1 form the synaptic SNARE complex. In this study we have examined the subcellular localization of rbSec1 and the degree of interaction between rbSec1 and syntaxin 1 in situ. rbSec1, which we show here to be represented by two alternatively spliced isoforms, rbSec1A and B, has a widespread distribution in the axon and is not restricted to the nerve terminal. This distribution parallels the localization of syntaxin 1 and SNAP-25 along the entire axonal plasmalemma. rbSec1 is found in a soluble and a membrane-associated form. Although a pool of rbSec1 is present on the plasmalemma, the majority of membrane-bound rbSec1 is not associated with syntaxin 1. We also show that rbSec1 is not part of the synaptic SNARE complex or of the syntaxin 1/SNAP-25 complex we show to be present in non-synaptic regions of the axon. Thus, in spite of biochemical studies demonstrating the high affinity interaction of rbSec1 and syntaxin 1, our results indicate that rbSec1 and syntaxin 1 are not stably associated. They also suggest that the function of rbSec1, syntaxin 1, and SNAP-25 is not restricted to synaptic vesicle exocytosis at the synapse.  相似文献   

8.
A family of high-affinity transporters controls the extracellular concentration of glutamate in the brain, ensuring appropriate excitatory signaling and preventing excitotoxicity. There is evidence that one of the neuronal glutamate transporters, EAAC1, is rapidly recycled on and off the plasma membrane with a half-life of no more than 5-7 min in both C6 glioma cells and cortical neurons. Syntaxin 1A has been implicated in the trafficking of several neurotransmitter transporters and in the regulation of EAAC1, but it has not been determined if this SNARE protein is required for EAAC1 trafficking. Expression of two different sets of SNARE proteins was examined in C6 glioma with Western blotting. These cells did not express syntaxin 1A, vesicle-associated membrane protein-1 (VAMP1), or synaptosomal-associated protein of 25 kDa (SNAP-25), but did express a family of SNARE proteins that has been implicated in glucose transporter trafficking, including syntaxin 4, vesicle-associated membrane protein-2 (VAMP2), and synaptosomal-associated protein of 23 kDa (SNAP-23). cDNAs encoding variants of SNAP-23 were co-transfected with Myc-tagged EAAC1 to determine if SNAP-23 function was required for maintenance of EAAC1 surface expression. Expression of a dominant-negative variant of SNAP-23 that lacks a domain required for SNARE complex assembly decreased the fraction of EAAC1 found on the cell surface and decreased total EAAC1 expression, while two control constructs had no effect. The dominant-negative variant of SNAP-23 also slowed the rate of EAAC1 delivery to the plasma membrane. These data strongly suggest that syntaxin 1A is not required for EAAC1 trafficking and provide evidence that SNAP-23 is required for constitutive recycling of EAAC1.  相似文献   

9.
SNAP-25 (Synaptosomal Associated Protein of 25 kDa), in association with two other SNARE (soluble NSF attachment protein receptor) proteins, syntaxin and Vesicle Associated Membrane Protein, VAMP, is implicated in regulated and constitutive exocytosis in neurones and neuroendocrine cells. Our previous studies have shown that it is expressed more by noradrenergic than adrenergic chromaffin cells in the rat adrenal gland. Since certain hormones under hypophyseal control play an essential role in determining chromaffin cell phenotype, the present study examined the effect of hypophysectomy on SNAP-25 expression. Hypophysectomy was found by immunoblotting and RT-PCR analysis to increase adrenal gland SNAP-25, syntaxin-1 and VAMP-2 levels, without modifying the relative expression of SNAP-25 isoforms: immunocytochemistry showed a dramatic increase in SNAP-25 expression in former adrenergic chromaffin cells. Since adrenal glucocorticoids are considerably reduced by hypophysectomy, the effect of corticosterone replacement therapy was investigated. This did not change levels of SNAP-25, syntaxin-1 or VAMP-2. SNARE expression was also unmodified in pheochromocytoma cells treated with a synthetic glucocorticoid. In contrast, subcutaneous injection of hypophysectomized rats with thyroid hormone decreased adrenal SNAP-25, demonstrating the potential importance of the pituitary-thyroid axis. The current data thus demonstrate that the hypophysis exerts an inhibitory control on adrenal gland SNARE proteins. They suggest that glucocorticoids are unlikely to be directly responsible for this but provide evidence that thyroid hormones are implicated in this phenomenon. The putative role of hormonal regulation on SNARE function is discussed.  相似文献   

10.
Membrane fusion requires the formation of four-helical bundles comprised of the SNARE proteins syntaxin, vesicle-associated membrane protein (VAMP), and the synaptosomal-associated protein of 25 kDa (SNAP-25). Botulinum neurotoxin E cleaves the C-terminal coil of SNAP-25, inhibiting exocytosis of norepinephrine from permeabilized PC12 cells. Addition of a 26-mer peptide comprising the C terminus of SNAP-25 that is cleaved by the toxin restores exocytosis, demonstrating that continuity of the SNAP-25 C-terminal helix is not critical for its function. By contrast, vesicle-associated membrane protein peptides could not rescue botulinum neurotoxin D-treated cells, suggesting that helix continuity is critical for VAMP function. Much higher concentrations of the SNAP-25 C-terminal peptide are required for rescuing exocytosis (K(assembly) = approximately 460 microm) than for binding to other SNAREs in vitro (Kd < 5 microm). Each residue of the peptide was mutated to alanine to assess its functional importance. Whereas most mutants rescue exocytosis with lower efficiency than the wild type peptide, D186A rescues with higher efficiency, and kinetic analysis suggests this is because of higher affinity for the cellular binding site. This is consistent with Asp-186 contributing to negative regulation of the fusion process.  相似文献   

11.
SNAP-25, syntaxin, and synaptobrevin are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. Membrane attachment of syntaxin and synaptobrevin is achieved through a C-terminal hydrophobic tail, whereas SNAP-25 association with membranes appears to depend upon palmitoylation of cysteine residues located in the center of the molecule. This process requires an intact secretory pathway and is inhibited by brefeldin A. Here we show that the minimal plasma membrane-targeting domain of SNAP-25 maps to residues 85-120. This sequence is both necessary and sufficient to target a heterologous protein to the plasma membrane. Palmitoylation of this domain is sensitive to brefeldin A, suggesting that it uses the same membrane-targeting mechanism as the full-length protein. As expected, the palmitoylated cysteine cluster is present within this domain, but surprisingly, membrane anchoring requires an additional five-amino acid sequence that is highly conserved among SNAP-25 family members. Significantly, the membrane-targeting module coincides with the protease-sensitive stretch (residues 83-120) that connects the two alpha-helices that SNAP-25 contributes to the four-helix bundle of the synaptic SNARE complex. Our results demonstrate that residues 85-120 of SNAP-25 represent a protein module that is physically and functionally separable from the SNARE complex-forming domains.  相似文献   

12.
Neurotransmitter gamma-aminobutyric acid (GABA) release to the synaptic clefts is mediated by the formation of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which includes two target SNAREs syntaxin 1A and SNAP-25 and one vesicle SNARE VAMP-2. The target SNAREs syntaxin 1A and SNAP-25 form a heterodimer, the putative intermediate of the SNARE complex. Neurotransmitter GABA clearance from synaptic clefts is carried out by the reuptake function of its transporters to terminate the postsynaptic signaling. Syntaxin 1A directly binds to the neuronal GABA transporter GAT-1 and inhibits its reuptake function. However, whether other SNARE proteins or SNARE complex regulates GABA reuptake remains unknown. Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A. This inhibition depends on SNAP-25/syntaxin 1A complex formation. The H3 domain of syntaxin 1A is identified as the binding sites for both SNAP-25 and GAT-1. SNAP-25 binding to syntaxin 1A greatly potentiates the physical interaction of syntaxin 1A with GAT-1 and significantly enhances the syntaxin 1A-mediated inhibition of GAT-1 reuptake function. Furthermore, nitric oxide, which promotes SNAP-25 binding to syntaxin 1A to form the SNARE complex, also potentiates the interaction of syntaxin 1A with GAT-1 and suppresses GABA reuptake by GAT-1. Thus our findings delineate a further molecular mechanism for the regulation of GABA reuptake by a target SNARE complex and suggest a direct coordination between GABA release and reuptake.  相似文献   

13.
Distinct domains within the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins, STX1A (syntaxin 1A) and SNAP-25 (synaptosome-associated protein-25 kDa), regulate hormone secretion by their actions on the cell's exocytotic machinery, as well as voltage-gated Ca2+ and K+ channels. We examined the action of distinct domains within SNAP-25 on Kv2.1 (voltage gated K+ 2.1) channel gating. Dialysis of N-terminal SNAP-25 domains, S197 (SNAP-25(1-197)) and S180 (SNAP-25(1-180)), but not S206 (full-length SNAP-25(1-206)) increased the rate of Kv2.1 channel activation and slowed channel inactivation. Remarkably, these N-terminal SNAP-25 domains, acting on the Kv2.1 cytoplasmic N-terminus, potentiated the external TEA (tetraethylammonium)-mediated block of Kv2.1. To further examine whether these are effects of the channel pore domain, internal K+ was replaced with Na+ and external K+ was decreased from 4 to 1 mM, which decreased the IC50 of the TEA block from 6.8+/-0.9 mM to >100 mM. Under these conditions S180 completely restored TEA sensitivity (7.9+/-1.5 mM). SNAP-25 C-terminal domains, SNAP-25(198-206) and SNAP-25(181-197), had no effect on Kv2.1 gating kinetics. We conclude that different domains within SNAP-25 can form distinct complexes with Kv2.1 to execute a fine allosteric regulation of channel gating and the architecture of the outer pore structure in order to modulate cell excitability.  相似文献   

14.
Soluble-NSF attachment protein receptor (SNARE) proteins play a role in vesicle fusion, exocytosis, and intracellular trafficking in neuronal cells as well as in fertilization and embryogenesis. We investigated the expression patterns of two SNARE proteins, SNAP-25 and synaptotagmin VII (SytVII), and their regulation by pregnant mare serum gonadotropin (PMSG) during mouse ovarian follicular development. Ovaries were obtained at 0, 12, 24, 36, and 48 h post-PMSG injection of immature mice. SNAP-25 and SytVII mRNA expression levels increased gradually in a time-dependant manner. However, protein levels revealed different patterns of expression, suggesting different translational regulation following PMSG stimulation. SNAP-25 and SytVII expression was closely associated with thickening of the granulosa cell (GC) layer and follicle morphological changes from a flattened to a cuboidal shape. To explore follicle stimulating hormone receptor (FSHR)-mediated regulation of their expression, GCs from preantral follicles were cultured to examine the effects of FSHR siRNA knockdown. FSHR siRNA abolished upregulation of the SNAREs in both PMSG and FSH-stimulated GCs. This abolished gene expression was rescued by adding dibutyryl cyclic AMP to the cultures. These results suggest that SNAP-25 and SytVII expression is regulated via the FSHR-cAMP pathway during follicular development.  相似文献   

15.
16.
SNAP-25 and its ubiquitously expressed homologue, SNAP-23, are SNARE proteins that are essential for regulated exocytosis in diverse cell types. Recent work has shown that SNAP-25 and SNAP-23 are partly localized in sphingolipid/cholesterol-rich lipid raft domains of the plasma membrane and that the integrity of these domains is important for exocytosis. Here, we show that raft localization is mediated by a 36-amino-acid region of SNAP-25 that is also the minimal sequence required for membrane targeting; this domain contains 4 closely spaced cysteine residues that are sites for palmitoylation. Analysis of endogenous levels of SNAP-25 and SNAP-23 present in lipid rafts in PC12 cells revealed that SNAP-23 (54% raft-associated) was almost 3-fold more enriched in rafts when compared with SNAP-25 (20% raft-associated). We report that the increased raft association of SNAP-23 occurs due to the substitution of a highly conserved phenylalanine residue present in SNAP-25 with a cysteine residue. Intriguingly, although the extra cysteine in SNAP-23 enhances its raft association, the phenylalanine at the same position in SNAP-25 acts to repress the raft association of this protein. These different raft-targeting signals within SNAP-25 and SNAP-23 are likely important for fine-tuning the exocytic pathways in which these proteins operate.  相似文献   

17.
Huang Q  Hong X  Hao Q 《FEBS letters》2008,582(10):1431-1436
SNAP-25 has a cysteine cluster located at its linker domain. In vivo, the cysteine residues in this cluster can be palmitoylated, and the hydrophobic palmitate molecules can target SNAP-25 to the presynaptic membrane. Here, we report that the SNAP-25a expressed in Escherichia coli is also an iron-sulfur protein binding an iron-sulfur cluster using the cysteine residues in its cysteine cluster. Therefore, SNAP-25a uses the same cysteine residues to bind two different prosthetic groups (iron-sulfur cluster and palmitate). Because the binding sites of these two prosthetic groups overlap, we suggest that these two modifications occur at different times, and probably at different places in the cell.  相似文献   

18.
Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet alpha, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phosphorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.  相似文献   

19.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

20.
《Gene》1997,194(2):169-177
The evolutionarily conserved protein SNAP-25 (synaptosome-associated protein 25 kDa (kilodaltons)) is a component of the protein complex involved in the docking and/or fusion of synaptic vesicles in nerve terminals. We report here that the SNAP-25 gene (Snap) in the fruit fly Drosophila melanogaster has a complex organization with eight exons spanning more than 120 kb (kilobases). The exon boundaries coincide with those of the chicken SNAP-25 gene (Bark, 1993). Only a single exon 5 has been found in Drosophila, whereas human, rat, chicken, zebrafish and goldfish have two alternatively spliced versions of this exon. In situ hybridization and immunocytochemistry to whole mount embryos show that SNAP-25 mRNA and protein are detected in stage 14 and later developmental stages, and are mainly localized to the ventral nerve cord. Thus, Snap has an evolutionarily conserved and complex gene organization, and its onset of expression in Drosophila melanogaster correlates with a time in neuronal development when synapses begin to be formed and when other synapse-specific genes are switched on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号